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MINIMAL GENERATING SET AND A STRUCTURE OF THE WREATH
PRODUCT OF GROUPS, AND THE FUNDAMENTAL GROUP OF THE

ORBIT MORSE FUNCTION

The quotient group of the restricted and unrestricted wreath product by its commutator
is found. The generic sets of commutator of wreath product were investigated.

The structure of wreath product with non-faithful group action is investigated.
Given a permutational wreath product sequence of cyclic groups, we investigate its mini-

mal generating set, the minimal generating set for its commutator and some properties of its
commutator subgroup.

We strengthen the results from the author [18, 21, 20] and construct the minimal generati-
ng set for the wreath product of both finite and infinite cyclic groups, in addition to the di-
rect product of such groups. We generalise the results of Meldrum J. [12] about commutator
subgroup of wreath products since, as well as considering regular wreath products, we consi-
der those which are not regular (in the sense that the active group 𝒜 does not have to act
faithfully). The commutator of such a group, its minimal generating set and the center of such
products has been investigated here.

The fundamental group of orbits of a Morse function 𝑓 : 𝑀 → R defined upon a Möbius
band 𝑀 with respect to the right action of the group of diffeomorphisms 𝒟(𝑀) has been
investigated. In particular, we describe the precise algebraic structure of the group 𝜋1𝑂(𝑓) . A
minimal set of generators for the group of orbits of the functions 𝜋1(𝑂𝑓 , 𝑓) arising under the
action of the diffeomorphisms group stabilising the function 𝑓 and stabilising 𝜕𝑀 have been
found. The Morse function 𝑓 has critical sets with one saddle point.

We consider a new class of wreath-cyclic geometrical groups. The minimal generating set
for this group and for the commutator of the group are found.
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Möbius band, wreath-cyclic group
2000 AMS subject classifications: 20B27, 20E08, 20B22, 20B35,20F65,20B07.

Introduction
Lucchini A. [10] previously investigated a case of the generating set of 𝐶𝑛−1

𝑝 ≀ 𝐺 , where
𝐺 denotes a finite 𝑛 -generated group, 𝑝 is a prime which does not divide the order |𝐺| and
𝐶𝑝 denotes the cyclic group of order 𝑝 . The results of Lucchini A. [10] tell us that the wreath
product 𝐶𝑛−1

𝑝 ≀ 𝐺 is also 𝑛 -generated. We firstly consider the active group 𝐺 which is cyclic
and then generalise this wreath product for both iterated wreath products and for the direct
product of wreath products of cyclic groups. It should be noted that a similar question for
iterated wreath product was studied by Bondarenko I. [3].
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Maksymenko S. [11] has proven that the 𝑛 -th homotopy groups of the orbit 𝑂(𝑓) , of 𝑓 ,
with respect to the right action of the group, Diff(𝑀) , of diffeomorphisms of 𝑀 , coincides with
those of 𝑀 for 𝑛 > 3 , i.e. 𝜋2𝑂(𝑓) = 0 , while, for the fundamental group 𝜋1𝑂(𝑓) , it is known
that it contains a free abelian subgroup of finite index. Despite this, information regarding
the fundamental group 𝜋1𝑂(𝑓) remains incomplete. We provide some insight by finding the
minimal generating set and its relations for the group 𝜋1𝑂(𝑓) .

Preliminaries
We denote by 𝑑(𝐺) the minimal number of generators of the group 𝐺 [10, 3]. A di-

ffeomorphism ℎ : 𝑀 → 𝑀 is said to be 𝑓 -preserving if 𝑓 ∘ ℎ = 𝑓 . This is equivalent to the
assumption that ℎ is invariant each level-set, i.e. 𝑓−1(𝑐) , 𝑐 ∈ 𝑃 of 𝑓 , where 𝑃 denotes either
the real line 𝑅 or the circle 𝑆1 .

Let 𝐺 be a group. The commutator width of 𝐺 [15], denoted 𝑐𝑤(𝐺) , is defined to be the
least integer 𝑛 , such that every element of 𝐺′ is a product of at most 𝑛 commutators if such
an integer exists, and otherwise is 𝑐𝑤(𝐺) = ∞ . The first example of a finite perfect group with
𝑐𝑤(𝐺) > 1 was presented by Isaacs I. [7]. The property of commutator widths for groups and
elements has proven to be important and in particular, its connections with stable commutator
length and bounded cohomology has become significant.

Meldrum J. [12] briefly considered one form of commutators of the wreath product 𝐴 ≀𝐵 .
In order to obtain a more detailed description of this form, we take into account the commutator
width (𝑐𝑤(𝐺)) as presented in work of Muranov A. [13].

The form of commutator presentation [12] has been given here in the form of wreath
recursion [9] and additionally, its commutator width has been studied.

The subtree of 𝑋* (or T ) which is induced by the set of vertices ∪𝑘
𝑖=0𝑋

𝑖 is denoted
by 𝑋 [𝑘] (or T𝑘 ). Denote the restriction of the action of an automorphism 𝑔 ∈ 𝐴𝑢𝑡𝑋* to
the subtree 𝑋 [𝑙] by 𝑔(𝑣)|𝑋[𝑙] . It should be noted that a restriction 𝑔(𝑣)|𝑋[1] is called the vertex
permutation (v.p) of 𝑔 in a vertex 𝑣 .

Center and commutator subgroup of wreath product
This work strengthens previous results by the author [18] and will additionally consider

a new class of groups. This class is precisely the wreath-cyclic groups and will be denoted by
ℑ . Let 𝐺 ∈ ℑ , then this class is constructed by formula:

𝐺 = (
𝑛0

≀
𝑗0=0

𝐶𝑘𝑗0
) × (

𝑛1

≀
𝑗1=0

𝐶𝑘𝑗1
) × · · · × (

𝑛𝑙

≀
𝑗𝑙=0

𝐶𝑘𝑗𝑙
), 1 6 𝑘𝑗𝑖 <∞, 𝑛𝑖 <∞,

where the orders of 𝐶𝑖𝑗 are denoted by 𝑖𝑗 .
It should be noted that at the end of this product, a semidirect product could arise with

a given homomorphism 𝜑 , which is defined by a free action on the set Z . In other words, one

would obtain a group of the form

(︂
𝑘∏︀

𝑖=1

𝐺𝑖

)︂𝑛

n𝜑Z.

Note that the last group here is isomorphic to one of the fundamental orbital groups
𝑂𝑓 (𝑓) of the Morse function 𝑓 . Namely, we have 𝜋0 (𝑆, 𝑓 |𝜕𝑀 ) [11].

Consider now the group 𝐻 =
𝑛

≀
𝑗=1
𝐶𝑖𝑗 , whose orders 𝑖𝑗 for all 𝐶𝑖𝑗 are mutually coprime

for all 𝑗 > 1 and whose number of cyclic factors in the wreath product is finite. We will call
such group 𝐻 wreath-cyclic.

Note that the multiplication rule of automorphisms 𝑔 , ℎ which are presented in the form

Skuratovskii R., Williams A. 77



ISSN 1817-2237. Вiсник ДонНУ. Сер. А: Природничi науки. - 2019.- № 1-2

of wreath recursion [14]

𝑔 = (𝑔(1), 𝑔(2), . . . , 𝑔(𝑑))𝜎𝑔, ℎ = (ℎ(1), ℎ(2), . . . , ℎ(𝑑))𝜎ℎ,

is given precisely by the formula:

𝑔 · ℎ = (𝑔1ℎ𝜎𝑔(1), 𝑔2ℎ𝜎𝑔(2), . . . , 𝑔𝑑ℎ𝜎𝑔(𝑑))𝜎𝑔𝜎ℎ.

In the general case, if an active group is not cyclic, then the cycle decomposition of an
𝑛 -tuple for automorphism sections will induce the corresponding decomposition of the 𝜎𝑔 . If
𝜎 is v.p of automorphism 𝑔 at 𝑣𝑖𝑗 and all the vertex permutations below 𝑣𝑖𝑗 are trivial, then
we do not distinguish 𝜎 from the section 𝑔𝑣𝑖𝑗 of 𝑔 which is defined by it. That is to say, we
can write 𝑔𝑣𝑖𝑗 = 𝜎 = (𝑣𝑖𝑗)𝑔 as proposed by Bartholdi L., Grigorchuk R. and Šuni Z. [1].

Minimal generating set of direct product of wreath product of cyclic groups
We now make use of both rooted and directed automorphisms as introduced by Bartholdi

L., Grigorchuk R. and Šuni Z. [1]. Recall that we denote a truncated tree by T .

Definition 1. An automorphism of T is said to be rooted if all of its vertex permutations
corresponding to non-empty words are trivial.

Let 𝑙 = 𝑥1𝑥2𝑥3 · · · be an infinite ray in T .

Definition 2. The automorphism 𝑔 of T is said to be directed along the infinite ray 𝑙 if
all vertex permutations along 𝑙 and all vertex permutations corresponding to vertices whose
distance to the ray 𝑙 is at least two are trivial. In such case, we say that 𝑙 is the spine of 𝑔
(as exemplified in Figure 1).

It should be noted that because we consider only truncated trees and truncated
automorphisms here and for convenience, we will say rooted automorphism instead of truncated
rooted automorphism.

Theorem 1. If orders of cyclic groups C𝑛𝑖
, C𝑛𝑗

are mutually coprime 𝑖 ̸= 𝑗 , then the group
𝐺 = 𝐶𝑖1 ≀ 𝐶𝑖2 ≀ · · · ≀ 𝐶𝑖𝑚 admits two generators, namely 𝛽0 , 𝛽1 .

Proof. Construct the generators of
𝑛

≀
𝑗=0
𝐶𝑖𝑗 as a rooted automorphism 𝛽0 (Figure 2) and a

directed automorphism 𝛽1 [1] along a path 𝑙 (Figure 1) on a rooted labeled truncated tree
𝑇𝑋 .

We consider the group 𝐺 = 𝐶𝑖1 ≀ 𝐶𝑖2 ≀ · · · ≀ 𝐶𝑖𝑚 . Construct the generating set of
𝐶𝑖1 ≀ 𝐶𝑖2 ≀ · · · ≀ 𝐶𝑖𝑚 , where the active group is on the left. Denote by 𝑙𝑐𝑚1 = 𝑙𝑐𝑚(𝑖2, 𝑖3, . . . , 𝑖𝑚)
the least common multiplier of the orders by 𝑖2, 𝑖3, . . . , 𝑖𝑚 . In a similar fashion, we denote

𝑙𝑐𝑚𝑘 = 𝑙𝑐𝑚(𝑖1, 𝑖2, . . . , 𝑖𝑘−1, 𝑖𝑘+1, . . . , 𝑖𝑚)

similarly.
We utilise a presentation of those wreath product elements from a tableaux of Kaloujnine

L. [8] which has the form 𝜎 = [𝑎1, 𝑎2(𝑥), 𝑎3 (𝑥1, 𝑥2) , . . .] . Additionally, we use a subgroup of
tableau with length 𝑛 which has the form 𝜎(𝑛) = [𝑎1, 𝑎2(𝑥1), . . . 𝑎𝑛(𝑥1, . . . , 𝑥𝑛)] . The tableaux
which has first 𝑛 trivial coordinates was denoted in [23] by

(𝑛)𝜎 = [𝑒, . . . , 𝑒, 𝛼𝑛+1(𝑥1, . . . , 𝑥𝑛), 𝛼𝑛+1(𝑥1, . . . , 𝑥𝑛+1), . . .] .

78 Skuratovskii R., Williams A.



ISSN 1817-2237. Вiсник ДонНУ. Сер. А: Природничi науки. - 2019.- № 1-2

…1,1 1,2 1,k

…

2,1 2,2 2,n

…

2,n+1 2,n+2 2,2n

3,nm+1 3,nm+2

…

2,k(n-1)+1 2,kn

…

3,nm+m+1 3,nm+2m

…

4,nml+ml+1

…

4, nml+ml+l

Ø

…1,1 1,2 1,k

Ø

…

2,12,2 2,n

…

2,kn

…

2,n+1 2,2n

Fig. 1. Directed automorhism Fig. 2. Rooted automorhism

The canonical set of generators for the wreath product of 𝐶𝑝 ≀ · · · ≀𝐶𝑝 ≀𝐶𝑝 was used by Dmitruk
Y. and Sushchanskii V. [5] and additionally utilised by the author [17]. This set has form

𝜎′
1 = [𝜋1, 𝑒, 𝑒, . . . , 𝑒] , 𝜎

′
2 = [𝑒1, 𝜋2, 𝑒, . . . , 𝑒] , ..., 𝜎

′
𝑛 = [𝑒1, 𝑒, . . . , 𝑒, 𝜋𝑛] . (1)

We split such a table into sections with respect to (1), where the 𝑖 -th section corresponds
to portrait of 𝛼 at 𝑖 -th level. The first section corresponds to an active group and the crown
of wreath product 𝐺 , the second section is separated with a semicolon to a base of the wreath
product. The sections of the base of wreath product are divided into parts by semicolon and
these parts correspond to groups 𝐶𝑖𝑗 which form the base of wreath product. The 𝑙 -th section
of of a tableau presentation of automorphism 𝛽1 corresponds to portrait of automorphism 𝛽1
on level 𝑋 𝑙 .

The portrait of automorphisms 𝛽1 on level 𝑋 𝑙 is characterised by the sequence
(𝑒, . . . , 𝑒, 𝜋𝑙, 𝑒, . . . , 𝑒) , where coordinate 𝜋𝑙 is the vertex number of unique non trivial v.p
on 𝑋 𝑙 , the sequence has 𝑖0𝑖1 . . . 𝑖𝑙−1 coordinates. Therefore, our first generator has the form
𝛽0 = [𝜋1, 𝑒, 𝑒, . . . , 𝑒] , which is the rooted automorphism. The second generator has the form

𝛽1 =

⎡⎣𝑒; 𝜋2, 𝑒, 𝑒, . . . , 𝑒⏟  ⏞  
𝑖1

;

𝑖1𝑖2⏞  ⏟  
𝑒, 𝑒, . . . , 𝑒⏟  ⏞  

𝑖2

, 𝜋3, 𝑒, . . . , 𝑒;

𝑖2𝑖3+𝑖3⏞  ⏟  
𝑒, . . . , 𝑒, 𝜋4, 𝑒, . . . , 𝑒⏟  ⏞  

𝑖1𝑖2𝑖3

; 𝑒, . . . , 𝑒

⎤⎦ ,
It should be noted that after the last(fourth) semicolon (or in other words before 𝜋5 )

there are 𝑖2𝑖3𝑖4 + 𝑖3𝑖4 + 𝑖4 trivial coordinates. There are 𝑖2𝑖3𝑖4𝑖5 + 𝑖3𝑖4𝑖5 + 𝑖4𝑖5 + 𝑖5 trivial
coordinates before 𝜋6 (or in other words after the fifth semicolon but before 𝜋6 ). In a section
after 𝑘− 1 semicolon the coordinate of a non-trivial element 𝜋𝑘 is calculated in a similar way.
We know from [23] that 𝛽1 is generator of (2)𝐺 , i.e. 2-base of 𝐺 . Recall that (𝑘)𝐺 calls k -th
base of 𝐺 . The subgroup (𝑘)𝐺 is a subgroup of all tableaux of form (𝑘)𝑢 with 𝑢 ∈ 𝐺 .

Let 𝐶𝑛 = ⟨𝜋𝑛⟩ and set 𝜎1 = 𝛽0 . We have to show that our generating set {𝛽0, 𝛽1}
generates the whole canonical generating set. For this, we obtain the second new generator 𝜎2
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in form of the tableau

𝜎𝑙𝑐𝑚2
2 = 𝛽𝑙𝑐𝑚2

1 =

⎡⎣𝑒; 𝜋𝑙𝑐𝑚2
2 , 𝑒, 𝑒, . . . , 𝑒⏟  ⏞  

𝑖1

; 𝑒, 𝑒, . . . , 𝑒⏟  ⏞  
𝑖1𝑖2

; 𝑒, 𝑒, . . . , 𝑒⏟  ⏞  
𝑖1𝑖2𝑖3

; 𝑒, . . . , 𝑒

⎤⎦ .
Because ord(𝜋1) = 𝑖1 and (𝑖1, 𝑙𝑐𝑚1) = 1 , we find that the element 𝜋𝑙𝑐𝑚1

1 is generator of
𝐶𝑖1 since ord(𝜋1) = ord(𝜋𝑙𝑐𝑚1

1 ) . We obtain that

𝜎2 =
(︀
𝛽𝑙𝑐𝑚2
1

)︀𝑙𝑐𝑚−1
2 (𝑚𝑜𝑑 𝑖2)

,

which corresponds to generator 𝜎2 of canonical generating set (1). Observe that 𝑏3 = 𝜎−1
1 𝛽1 is

generator of (3)𝐺 , i.e. it is precisely a 3-base of 𝐺 .

It is known [23] that the generator 𝜎2 precisely generates the group that is isomorphic to
the group [𝑈 ]2 for all 2 -nd coordinate tableaux. From the same principle, one can obtain that

𝜎3 = 𝛽𝑙𝑐𝑚3
1 =

⎡⎢⎣𝑒; 𝑒, 𝑒, . . . , 𝑒⏟  ⏞  
𝑖1

;

𝑖1𝑖2⏞  ⏟  
𝑒, 𝑒, . . . , 𝑒⏟  ⏞  

𝑖2

, 𝜋𝑙𝑐𝑚3
3 , 𝑒, . . . , 𝑒;

𝑖2𝑖3⏞  ⏟  
𝑒, . . . , 𝑒, 𝑒, . . . , 𝑒⏟  ⏞  

𝑖1𝑖2𝑖3

; 𝑒 . . . 𝑒

⎤⎥⎦ .
This generator 𝜎3 generates the group which is isomorphic to the group of all (2𝑖1 + 2) -th
coordinate tableaux, which is precisely [𝑈 ]2𝑖1+2 [23]. Making use of the same principle allows
us to express all the 𝜎𝑖 from our canonical generating set.

Note that if it were a self-similar group, then it would be more useful to present
it in terms of wreath recursion, as the set where 𝛽0 is the rooted automorphism. Given
a permutational representation of 𝐶𝑖𝑗 we can present our group by wreath recursion. We
present 𝛽1 by wreath recursion as 𝛽1 = (𝜋2, 𝛽2, 𝑒, 𝑒, . . . , 𝑒) . It would be written in form
𝜎𝑙𝑐𝑚2
1 = 𝛽1

𝑙𝑐𝑚2 = (𝜋2
𝑙𝑐𝑚2 , 𝛽2

𝑙𝑐𝑚2 , 𝑒, 𝑒, . . . , 𝑒) = (𝜋2
𝑙𝑐𝑚(2), 𝑒, 𝑒, . . . , 𝑒) , since ord(𝜋2) = 𝑖2 and

(𝑖2, 𝑙𝑐𝑚2) = 1 then the element 𝜋𝑙𝑐𝑚2
2 is generator of 𝐶𝑖2 too, because ord(𝜋2) = ord(𝜋𝑙𝑐𝑚2

2 ) .
We then obtain the second generator 𝜎2 of canonical generating set by exponentiation(︀

𝛽𝑙𝑐𝑚2
1

)︀𝑙𝑐𝑚−1
2 (𝑚𝑜𝑑 𝑖2)

= (𝜋2, 𝑒, . . . , 𝑒) . Since we have obtained 𝜎2 = (𝜋2, 𝑒, . . . , 𝑒) , we can express
𝜎−1
2 =

(︀
𝜋−1
2 , 𝑒, . . . , 𝑒

)︀
, where 𝜋2 is a state of 𝜎2 .

Consider an alternative recursive constructed generating set which consists of nested
automorphism 𝛽1 states which are 𝛽2 , 𝛽3 ,. . . , 𝛽𝑚 and the automorphism 𝛽0 . The state 𝛽2
is expressed as follows 𝜎−1

2 𝛽1 = (𝑒, 𝛽2, 𝑒, . . . , 𝑒) .
It should be noted that a second generator of a recursive generating set could be

constructed in an other way, namely 𝛽′
2 = 𝛽1

𝑖2 = (𝜋2
𝑖2 , 𝛽2

𝑖2 , 𝑒, 𝑒, . . . , 𝑒) = (𝑒, 𝛽2
𝑖2 , . . . , 𝑒, 𝑒) ,

where 𝛽2 is the state in a vertex of the second level 𝑋2 .
We can then express the next state 𝛽2 of 𝛽1 by multiplying 𝜎−1

2 𝛽1 = (𝑒, 𝛽2, 𝑒, . . . , 𝑒) .
Therefore, by a recursive approach, we obtain 𝛽2 = (𝜋3, 𝛽3, 𝑒, ..., 𝑒) and analogously we obtain
𝛽𝑙𝑐𝑚3
2 = 𝜎𝑙𝑐𝑚3

3 = (𝜋𝑙𝑐𝑚3
3 , 𝑒, . . . , 𝑒) . Similarly, we obtain

𝛽𝑙𝑐𝑚𝑘
𝑘−1 = 𝜎𝑙𝑐𝑚𝑘

𝑘 =
(︁
𝜋𝑙𝑐𝑚𝑘
𝑘 , 𝑒, . . . , 𝑒

)︁
and 𝜎𝑘 =

(︁
𝛽𝑙𝑐𝑚𝑘
𝑘−1

)︁𝑙𝑐𝑚−1
𝑘 (mod 𝑖𝑘)

= (𝜋𝑘, 𝑒, . . . , 𝑒) . The 𝑘 -th generator of the recursive generating

set can therefore be expressed as 𝜎−1
𝑘 𝛽𝑘−1 = (𝑒, 𝛽𝑘, 𝑒, . . . , 𝑒) .
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The last generator of our generating set has another structure, namely 𝜎𝑚 = (𝜋𝑚, 𝑒, . . . , 𝑒)
which concludes the proof. 2

Let
𝑛

≀
𝑗=0
𝐶𝑖𝑗 be generated by 𝛽0 and 𝛽1 and

𝑚

≀
𝑙=0
𝐶𝑘𝑙 = ⟨𝛼0, 𝛼1⟩ . Denote an order of 𝑔 by

|𝑔| .

Theorem 2. If (|𝛼0|, |𝛽0|) = 1 and (|𝛼1|, |𝛽1|) = 1 or (|𝛼0|, |𝛽1|) = 1 and (|𝛼1|, |𝛽0|) = 1 ,
then there exists generating set of 2 elements for the wreath-cyclic group

𝐺 = (
𝑛

≀
𝑗=0
𝐶𝑖𝑗) × (

𝑚

≀
𝑙=0
𝐶𝑘𝑙),

where 𝑖𝑗 are orders of 𝐶𝑖𝑗 .

Proof. The generators 𝛼1 and 𝛽1 are directed automorphisms, 𝛼0, 𝛽0 are rooted
automorphisms [1]. The structure of tableaux are described above in Theorem 1. In case
(|𝛼0|, |𝛽0|) = 1 are mutually coprime and (|𝛼1|, |𝛽1|) = 1 are mutually coprime, then we group

generator 𝛼0 and 𝛽0 in vector that is first generator of direct product (
𝑛

≀
𝑗=0
𝐶𝑖𝑗) × (

𝑚

≀
𝑙=0
𝐶𝑘𝑙) .

Therefore, the first generator of 𝐺 has form (𝛼0, 𝛽0) and the second generator has form of
vector (𝛽1, 𝛼1 ) . The generator 𝛼1 has a similar structure.

In order to express the generator 𝜎2 of the canonical set (1) from ⟨𝛼0, 𝛽1⟩ we change the
exponent from 𝛽1 to 𝑙𝑐𝑚2 . Analogously, we obtain 𝜎𝑘 = 𝛽1

𝑙𝑐𝑚𝑘 which concludes the proof.
2

Generators of commutator and center of wreath product
The following Lemma imposes the Corollary 4.9 of [12].

Lemma 1. An element of form (𝑟1, . . . , 𝑟𝑝−1, 𝑟𝑝) ∈ 𝑊 ′ = (𝐵 ≀𝐶𝑝)
′ iff product of all 𝑟𝑖 (in any

order) belongs to 𝐵′ , where 𝑝 ∈ N , 𝑝 > 2 .

Proof. Analogously to the Corollary 4.9 of the Meldrum’s book [12] we can deduce new
presentation of commutators in form of wreath recursion

𝑤 = (𝑟1, 𝑟2, . . . , 𝑟𝑝−1, 𝑟𝑝),

where 𝑟𝑖 ∈ 𝐵 . If we multiply elements from a tuple (𝑟1, . . . , 𝑟𝑝−1, 𝑟𝑝) , where 𝑟𝑖 = ℎ𝑖𝑔𝑎(𝑖)ℎ
−1
𝑎𝑏(𝑖)𝑔

−1
𝑎𝑏𝑎−1(𝑖) ,

ℎ, 𝑔 ∈ 𝐵 and 𝑎, 𝑏 ∈ 𝐶𝑝 , then we get a product

𝑥 =

𝑝∏︁
i=1

𝑟𝑖 =

𝑝∏︁
𝑖=1

ℎ𝑖𝑔𝑎(𝑖)ℎ
−1
𝑎𝑏(𝑖)𝑔

−1
𝑎𝑏𝑎−1(𝑖) ∈ 𝐵′, (2)

where 𝑥 is a product of corespondent commutators. Therefore, we can write 𝑟𝑝 = 𝑟−1
𝑝−1 . . . 𝑟

−1
1 𝑥 .

We can rewrite element 𝑥 ∈ 𝐵′ as the product 𝑥 =
𝑚∏︀
𝑗=1

[𝑓𝑗, 𝑔𝑗] , 𝑚 6 𝑐𝑤(𝐵) .

Note that we impose more weak condition on the product of all 𝑟𝑖 to belongs to 𝐵′ then
in Definition 4.5. of form 𝑃 (𝐿) in [12], where the product of all 𝑟𝑖 belongs to a subgroup 𝐿
of 𝐵 such that 𝐿 > 𝐵′ .

In more detail deducing of our representation constructing can be reported in
following way. If we multiply elements having form of a tuple (𝑟1, . . . , 𝑟𝑝−1, 𝑟𝑝) , where
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𝑟𝑖 = ℎ𝑖𝑔𝑎(𝑖)ℎ
−1
𝑎𝑏(𝑖)𝑔

−1
𝑎𝑏𝑎−1(𝑖) , ℎ, 𝑔 ∈ 𝐵 and 𝑎, 𝑏 ∈ 𝐶𝑝 , then in case 𝑐𝑤(𝐵) = 0 we obtain a

product
𝑝∏︁
i=1

𝑟𝑖 =

𝑝∏︁
𝑖=1

ℎ𝑖𝑔𝑎(𝑖)ℎ
−1
𝑎𝑏(𝑖)𝑔

−1
𝑎𝑏𝑎−1(𝑖) ∈ 𝐵′. (3)

Note that if we rearrange elements in (2) as ℎ1ℎ
−1
1 𝑔1𝑔

−1
2 ℎ2ℎ

−1
2 𝑔1𝑔

−1
2 ...ℎ𝑝ℎ

−1
𝑝 𝑔𝑝𝑔

−1
𝑝 then by

the reason of such permutations we obtain a product of corespondent commutators. Therefore,
following equality holds true

𝑝∏︁
𝑖=1

ℎ𝑖𝑔𝑎(𝑖)ℎ
−1
𝑎𝑏(𝑖)𝑔

−1
𝑎𝑏𝑎−1(𝑖) =

𝑝∏︁
𝑖=1

ℎ𝑖𝑔𝑖ℎ
−1
𝑖 𝑔−1

𝑖 𝑥0 =

𝑝∏︁
𝑖=1

ℎ𝑖ℎ
−1
𝑖 𝑔𝑖𝑔

−1
𝑖 𝑥 ∈ 𝐵′, (4)

where 𝑥0, 𝑥 are a products of corespondent commutators. Therefore,

(𝑟1, . . . , 𝑟𝑝−1, 𝑟𝑝) ∈ 𝑊 ′ iff 𝑟𝑝−1 · . . . · 𝑟1 · 𝑟𝑝 = 𝑥 ∈ 𝐵′. (5)

Thus, one element from states of wreath recursion (𝑟1, . . . , 𝑟𝑝−1, 𝑟𝑝) depends on rest of 𝑟𝑖 . This

dependence contribute that the product
𝑝∏︀

𝑗=1

𝑟𝑗 for an arbitrary sequence {𝑟𝑗}𝑝𝑗=1 belongs to

𝐵′ . Thus, 𝑟𝑝 can be expressed as:

𝑟𝑝 = 𝑟−1
1 · . . . · 𝑟−1

𝑝−1𝑥.

Denote a 𝑗 -th tuple, which consists of a wreath recursion elements, by (𝑟𝑗1 , 𝑟𝑗2 , ..., 𝑟𝑗𝑝) .
Closedness by multiplication of the set of form
(𝑟1, . . . , 𝑟𝑝−1, 𝑟𝑝) ∈ 𝑊 = (𝐵 ≀ 𝐶𝑝)

′ follows from

𝑘∏︁
𝑗=1

(𝑟𝑗1 . . . 𝑟𝑗𝑝−1𝑟𝑗𝑝) =
𝑘∏︁

𝑗=1

𝑝∏︁
𝑖=1

𝑟𝑗𝑖 = 𝑅1𝑅2...𝑅𝑘 ∈ 𝐵′, (6)

where 𝑟𝑗𝑖 is 𝑖 -th element from the tuple number 𝑗 , 𝑅𝑗 =
𝑝∏︀

𝑖=1

𝑟𝑗𝑖, 1 6 𝑗 6 𝑘 . As it

was shown above 𝑅𝑗 =
𝑝−1∏︀
𝑖=1

𝑟𝑗𝑖 ∈ 𝐵′ . Therefore, the product (6) of 𝑅𝑗 , 𝑗 ∈ {1, ..., 𝑘} which

is similar to the product mentioned in [12], has the property 𝑅1𝑅2...𝑅𝑘 ∈ 𝐵′ too, because of
𝐵′ is subgroup. Thus, we get a product of form (2) and the similar reasoning as above are
applicable.

Let us prove the sufficiency condition. If the set 𝐾 of elements satisfying the condition
of this theorem, that all products of all 𝑟𝑖 , where every 𝑖 occurs in this forms once, belong to
𝐵′ , then using the elements of form

(𝑟1, 𝑒, ..., 𝑒, 𝑟
−1
1 ) , ... , (𝑒, 𝑒, ..., 𝑒, 𝑟𝑖, 𝑒, 𝑟

−1
𝑖 ) , ... , (𝑒, 𝑒, ..., 𝑒, 𝑟𝑝−1, 𝑟

−1
𝑝−1) ,

(𝑒, 𝑒, ..., 𝑒, 𝑟1𝑟2 · ... · 𝑟𝑝−1)
we can express any element of form (𝑟1, . . . , 𝑟𝑝−1, 𝑟𝑝) ∈ 𝑊 = (𝐵 ≀ 𝐶𝑝)

′ . We need to prove
that in such way we can express all element from 𝑊 and only elements of 𝑊 . The fact that
all elements can be generated by elements of 𝐾 follows from randomness of choice every 𝑟𝑖 ,
𝑖 < 𝑝 and the fact that equality (2) holds so construction of 𝑟𝑝 is determined.
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Lemma 2. For any group 𝐵 and integer 𝑝 > 2 if 𝑤 ∈ (𝐵 ≀ 𝐶𝑝)
′ then 𝑤 can be represented

as the following wreath recursion

𝑤 = (𝑟1, 𝑟2, . . . , 𝑟𝑝−1, 𝑟
−1
1 . . . 𝑟−1

𝑝−1

𝑘∏︁
𝑗=1

[𝑓𝑗, 𝑔𝑗]),

where 𝑟1, . . . , 𝑟𝑝−1, 𝑓𝑗, 𝑔𝑗 ∈ 𝐵 and 𝑘 6 𝑐𝑤(𝐵) .

Proof. According to Lemma 1. we have the following wreath recursion

𝑤 = (𝑟1, 𝑟2, . . . , 𝑟𝑝−1, 𝑟𝑝),

where 𝑟𝑖 ∈ 𝐵 and 𝑟𝑝−1𝑟𝑝−2 . . . 𝑟2𝑟1𝑟𝑝 = 𝑥 ∈ 𝐵′ . Therefore we can write 𝑟𝑝 = 𝑟−1
1 . . . 𝑟−1

𝑝−1𝑥 . We

also can rewrite element 𝑥 ∈ 𝐵′ as product of commutators 𝑥 =
𝑘∏︀

𝑗=1

[𝑓𝑗, 𝑔𝑗] where 𝑘 6 𝑐𝑤(𝐵) .

Let us find upper bound of generators number for 𝐺′ . Let 𝒜 be a group and ℬ a
permutation group, i.e. a group 𝒜 acting upon a set 𝑋 , where the active group 𝒜 can act
not faithfully. Consider the set of all pairs {(𝑎, 𝑓), 𝑓 : 𝑋 → ℎ, 𝑎 ∈ 𝒜} . We define a product on
this set as

{(𝑎1, 𝑓1)(𝑎2, 𝑓2) := (𝑎1𝑎2, 𝑓1𝑓
𝑎1
2 )},

where 𝑓𝑎2
1 (𝑥) = 𝑓1(𝑎2(𝑥)) .

Theorem 3. If 𝑊 = (𝒜, 𝑋) ≀ (ℬ, 𝑌 ) , where |𝑋| = 𝑛, |𝑌 | = 𝑚 and active group 𝒜 acts on
𝑋 transitively, then

𝑑 (𝐺′) 6 (𝑛− 1)𝑑(ℬ) + 𝑑(ℬ′) + 𝑑(𝒜′).

Proof. The generators of 𝑊 ′ in form of tableaux [2]:

𝑎′𝑖 = (𝑎𝑖; 𝑒, 𝑒, 𝑒, . . . , 𝑒), 𝑡1 = (𝑒;ℎ𝑗1 , 𝑒, 𝑒, . . . , 𝑐𝑗1), . . . , 𝑡𝑘 = (𝑒; 𝑒, 𝑒, 𝑒, . . . , ℎ𝑗𝑘 , 𝑒, . . . , 𝑐𝑗𝑘), 𝑡𝑙 = (𝑒; 𝑒, 𝑒, 𝑒, . . . , ℎ𝑗𝑙 , 𝑐𝑗𝑙),

where ℎ𝑗, 𝑐𝑗𝑙 ∈ 𝑆𝐵 , ℬ = ⟨𝑆𝐵⟩ , 𝑎𝑖 ∈ 𝑆𝐴 , 𝐴 = ⟨𝑆𝐴⟩ . Note that, on a each coordinate of tableau,
that presents a commutator of [𝑎;ℎ1, . . . , ℎ𝑛] and [𝑏; 𝑔1, . . . , 𝑔𝑛] , 𝑎, 𝑏 ∈ 𝒜, ℎ𝑖, 𝑔𝑗 ∈ ℬ can be
product of form 𝑎1𝑎2𝑎

−1
1 𝑎−1

2 ∈ 𝒜′ and ℎ𝑖𝑔𝑎(𝑖)ℎ
−1
𝑎𝑏(𝑖)𝑔

−1
𝑎𝑏𝑎−1(𝑖) ∈ ℬ , according to Corollary 4.9 [12].

This products should satisfy the following condition:

𝑛∏︁
𝑖∈𝑋

ℎ𝑖𝑔𝑎(𝑖)ℎ
−1
𝑎𝑏(𝑖)𝑔

−1
𝑎𝑏𝑎−1(𝑖) ∈ ℬ′. (7)

That is to say that the product of coordinates of wreath product base is an element of
commutator ℬ′ . As it was described above it is subdirect product of ℬ × ℬ × · · · × ℬ⏟  ⏞  

𝑛

with

the additional condition (8). This is the case because not all element of the subdirect product
are independent because the elements must be chosen in such a way that (8) holds. We may
rearrange the factors in the product in the following way:

𝑛∏︁
𝑖=1

ℎ𝑖𝑔𝑎(𝑖)ℎ
−1
𝑎𝑏(𝑖)𝑔

−1
𝑎𝑏𝑎−1(𝑖) = (

𝑛∏︁
𝑖=1

ℎ𝑖𝑔𝑖ℎ
−1
𝑖 𝑔−1

𝑖 )[𝑔, ℎ] ∈ ℬ′.
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where [𝑔, ℎ] is a commutator in case 𝑐𝑤(𝐵) = 1 . We express this element from ℬ′ as

commutator [𝑔, ℎ] if 𝑐𝑤(𝐵) = 1 . In the general case, we would have
𝑐𝑤(𝐵)∏︀
𝑗=1

[𝑔𝑗, ℎ𝑗] instead of

this element. This commutator are formed as product of commutators of rearranged elements

of
𝑛∏︀

𝑖=1

ℎ𝑖𝑔𝑎(𝑖)ℎ
−1
𝑎𝑏(𝑖)𝑔

−1
𝑎𝑏𝑎−1(𝑖) . Therefore, we have a subdirect product of 𝑛 the copies of the group

𝐵 which has been equipped by condition (8). The multiplier
𝑐𝑤(𝐵)∏︀
𝑗=1

[𝑔𝑗, ℎ𝑗] from ℬ′ , which has

at least 𝑑(ℬ′) generators

𝑛∏︁
𝑖=1

ℎ𝑖𝑔𝑎(𝑖)ℎ
−1
𝑎𝑏(𝑖)𝑔

−1
𝑎𝑏𝑎−1(𝑖) = (

𝑛∏︁
𝑖=1

ℎ𝑖𝑔𝑖ℎ
−1
𝑖 𝑔−1

𝑖 )

𝑐𝑤(𝐵)∏︁
𝑗=1

[𝑔𝑗, ℎ𝑗] ∈ ℬ′.

Since (
𝑛∏︀

𝑖=1

ℎ𝑖𝑔𝑖ℎ
−1
𝑖 𝑔−1

𝑖 ) = 𝑒 and the product
𝑐𝑤(𝐵)∏︀
𝑗=1

[𝑔𝑗, ℎ𝑗] belongs to ℬ′ , then condition

(8) holds. The assertion of a theorem on a recursive principle is easily generalized on multiple
wreath product of groups.

Thus minimal total amount consists of at least 𝑑 (ℬ′) generators for 𝑛−1 factors of group
ℬ , 𝑑 (ℬ′) generators for the dependent factor from ℬ′ and 𝑑(𝒜) generators of the group 𝒜
which concludes the proof.

It should be noted that not all the elements of commutator subgroup, that has structure
of the subdirect product, are independent by (8), at least one of them must be chosen carefully
such that would be (8) satisfied. This implies the estimation 𝑑 (𝐺′) 6 (𝑛− 1)𝑑(𝐵) + 𝑑(𝐵′) .

Thus minimal total amount consists of at least 𝑑 (ℬ′) generators for 𝑛−1 factors of group
ℬ , 𝑑 (ℬ′) generators for the dependent factor from ℬ′ and 𝑑(𝒜) generators of the group 𝒜
which concludes the proof.

Let us find upper bound of generators number for 𝐺′ . Let 𝒜 be a group and ℬ a
permutation group, i.e. a group 𝒜 acting upon a set 𝑋 , where the active group 𝒜 can act
not faithfully. Consider the set of all pairs {(𝑎, 𝑓), 𝑓 : 𝑋 → ℎ, 𝑎 ∈ 𝒜} . We define a product on
this set as

{(𝑎1, 𝑓1)(𝑎2, 𝑓2) := (𝑎1𝑎2, 𝑓1𝑓
𝑎1
2 )},

where 𝑓𝑎2
1 (𝑥) = 𝑓1(𝑎2(𝑥)) .

Theorem 4. If 𝑊 = (𝒜, 𝑋) ≀ (ℬ, 𝑌 ) , where |𝑋| = 𝑛, |𝑌 | = 𝑚 and active group 𝒜 acts on
𝑋 transitively, then

𝑑 (𝐺′) 6 (𝑛− 1)𝑑(ℬ) + 𝑑(ℬ′) + 𝑑(𝒜′).

Proof. The generators of 𝑊 ′ in form of tableaux [2]: 𝑎′𝑖 = (𝑎𝑖; 𝑒, 𝑒, 𝑒, . . . , 𝑒) ,

𝑡1 = (𝑒;ℎ𝑗1 , 𝑒, 𝑒, . . . , 𝑐𝑗1), . . . , 𝑡𝑘 = (𝑒; 𝑒, 𝑒, 𝑒, . . . , ℎ𝑗𝑘 , 𝑒, . . . , 𝑐𝑗𝑘), 𝑡𝑙 = (𝑒; 𝑒, 𝑒, 𝑒, . . . , ℎ𝑗𝑙 , 𝑐𝑗𝑙),

where ℎ𝑗, 𝑐𝑗𝑙 ∈ 𝑆𝐵 , ℬ = ⟨𝑆𝐵⟩ , 𝑎𝑖 ∈ 𝑆𝐴 , 𝐴 = ⟨𝑆𝐴⟩ . Note that, on a each coordinate of tableau,
that presents a commutator of [𝑎;ℎ1, . . . , ℎ𝑛] and [𝑏; 𝑔1, . . . , 𝑔𝑛] , 𝑎, 𝑏 ∈ 𝒜, ℎ𝑖, 𝑔𝑗 ∈ ℬ can be
product of form 𝑎1𝑎2𝑎

−1
1 𝑎−1

2 ∈ 𝒜′ and ℎ𝑖𝑔𝑎(𝑖)ℎ
−1
𝑎𝑏(𝑖)𝑔

−1
𝑎𝑏𝑎−1(𝑖) ∈ ℬ , according to Corollary 4.9 [12].

This products should satisfy the following condition:

𝑛∏︁
𝑖∈𝑋

ℎ𝑖𝑔𝑎(𝑖)ℎ
−1
𝑎𝑏(𝑖)𝑔

−1
𝑎𝑏𝑎−1(𝑖) ∈ ℬ′. (8)
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That is to say that the product of coordinates of wreath product base is an element of
commutator ℬ′ . As it was described above it is subdirect product of ℬ × ℬ × · · · × ℬ⏟  ⏞  

𝑛

with

the additional condition (8). This is the case because not all element of the subdirect product
are independent because the elements must be chosen in such a way that (8) holds. We may
rearrange the factors in the product in the following way:

𝑛∏︁
𝑖=1

ℎ𝑖𝑔𝑎(𝑖)ℎ
−1
𝑎𝑏(𝑖)𝑔

−1
𝑎𝑏𝑎−1(𝑖) = (

𝑛∏︁
𝑖=1

ℎ𝑖𝑔𝑖ℎ
−1
𝑖 𝑔−1

𝑖 )[𝑔, ℎ] ∈ ℬ′.

where [𝑔, ℎ] is a commutator in case 𝑐𝑤(𝐵) = 1 . We express this element from ℬ′ as

commutator [𝑔, ℎ] if 𝑐𝑤(𝐵) = 1 . In the general case, we would have
𝑐𝑤(𝐵)∏︀
𝑗=1

[𝑔𝑗, ℎ𝑗] instead of

this element. This commutator are formed as product of commutators of rearranged elements

of
𝑛∏︀

𝑖=1

ℎ𝑖𝑔𝑎(𝑖)ℎ
−1
𝑎𝑏(𝑖)𝑔

−1
𝑎𝑏𝑎−1(𝑖) . Therefore, we have a subdirect product of 𝑛 the copies of the group

𝐵 which has been equipped by condition (8). The multiplier
𝑐𝑤(𝐵)∏︀
𝑗=1

[𝑔𝑗, ℎ𝑗] from ℬ′ , which has

at least 𝑑(ℬ′) generators

𝑛∏︁
𝑖=1

ℎ𝑖𝑔𝑎(𝑖)ℎ
−1
𝑎𝑏(𝑖)𝑔

−1
𝑎𝑏𝑎−1(𝑖) = (

𝑛∏︁
𝑖=1

ℎ𝑖𝑔𝑖ℎ
−1
𝑖 𝑔−1

𝑖 )

𝑐𝑤(𝐵)∏︁
𝑗=1

[𝑔𝑗, ℎ𝑗] ∈ ℬ′.

Since (
𝑛∏︀

𝑖=1

ℎ𝑖𝑔𝑖ℎ
−1
𝑖 𝑔−1

𝑖 ) = 𝑒 and the product
𝑐𝑤(𝐵)∏︀
𝑗=1

[𝑔𝑗, ℎ𝑗] belongs to ℬ′ , then condition

(8) holds. The assertion of a theorem on a recursive principle is easily generalized on multiple
wreath product of groups.

Thus minimal total amount consists of at least 𝑑 (ℬ′) generators for 𝑛−1 factors of group
ℬ , 𝑑 (ℬ′) generators for the dependent factor from ℬ′ and 𝑑(𝒜) generators of the group 𝒜
which concludes the proof.

It should be noted that not all the elements of commutator subgroup, that has structure
of the subdirect product, are independent by (8), at least one of them must be chosen carefully
such that would be (8) satisfied. This implies the estimation 𝑑 (𝐺′) 6 (𝑛− 1)𝑑(𝐵) + 𝑑(𝐵′) .

Thus minimal total amount consists of at least 𝑑 (ℬ′) generators for 𝑛−1 factors of group
ℬ , 𝑑 (ℬ′) generators for the dependent factor from ℬ′ and 𝑑(𝒜) generators of the group 𝒜
which concludes the proof. 2

We shall consider special case when a passive group (ℬ, 𝑌 ) of 𝑊 is a perfect group. Since
we obtain a direct product of 𝑛 − 1 the copies of the group 𝐵 then according to Corollary
3.2. of Wiegold J. [24] 𝑑 (ℬ𝑛) 6 𝑑(ℬ) + 𝑛 − 1 [24]. More exact upper bound give us Theorem
A. [24], which use 𝑠 a the size of the smallest simple image of 𝐺 .

Therefore, in this case our upper bound has the form

𝑑 (𝑊 ′) 6 𝑐𝑙𝑜𝑔𝑠𝑛+ 𝑑(ℬ′) + 𝑑(𝒜′).

Now we consider no regular wreath product, where active group can be both as infinite as
finite and consider a center of such group. This is generalization of Theorem 4.2 from the book
[12] because action of 𝒜 is not non faithfully. Let 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} be 𝒜 -space. If an non
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faithfully action by conjugation determines a shift of copies of ℬ from direct product ℬ𝑛 then
we have not standard wreath product (𝒜, 𝑋) ≀ ℬ that is semidirect product of 𝒜 and

∏︀
𝑥𝑖∈𝑋

B

that is 𝒜n𝜙(ℬ)𝑛 and the following Proposition holds. Let 𝒦 = 𝑘𝑒𝑟(𝒜, 𝑋) that is subgroup of
𝒜 that acts on 𝑋 as a pointwise stabiliser, that is kernel of action of 𝒜 on 𝑋 .

Denote by 𝑍(△̃(ℬ)) the subgroup of diagonal subgroup [4] 𝐹𝑢𝑛(𝑋,𝑍(𝐵)) of functions
𝑓 : 𝑋 → 𝑍(𝐵) which are constant on each orbit of action of 𝐴 on 𝑋 for unrestricted wreath
product, and denote by 𝑍(△(ℬ𝑛)) the subgroup of diagonal 𝐹𝑢𝑛(𝑋,𝑍(ℬ𝑛)) of functions with
the same property for restricted wreath product, where 𝑛 is number of non-trivial coordinates
in base of wreath product.

Proposition 1 A center of the group (𝒜, 𝑋) ≀ ℬ is direct product of normal closure
of center of diagonal of 𝑍(ℬ𝑛) i.e. (𝐸 × 𝑍(△(ℬ𝑛)) ), trivial an element, and intersection of
(𝒦) × 𝐸 with 𝑍(𝒜) . In other words,

𝑍((𝒜, 𝑋) ≀ ℬ) = ⟨(1; ℎ, ℎ, . . . , ℎ⏟  ⏞  
𝑛

), 𝑒, 𝑍(𝒦, 𝑋) ≀ ℰ⟩ ≃ (𝑍(𝒜) ∩ 𝒦) × 𝑍(△(ℬ𝑛)),

where ℎ ∈ 𝑍(ℬ) , |𝑋| = 𝑛 .
For restricted wreath product with 𝑛 non-trivial coordinates: 𝑍((𝒜, 𝑋) ≀ ℬ) =

⟨(1; . . . , ℎ, ℎ, . . . , ℎ, . . .), 𝑒, 𝑍(𝒦, 𝑋) ≀ ℰ⟩ ≃ (𝑍(𝒜) ∩ 𝒦) × 𝑍(△(ℬ𝑛)).
In case of unrestricted wreath product we have: 𝑍((𝒜, 𝑋) ≀ ℬ) =

⟨(1; . . . , ℎ−1, ℎ0, ℎ1, . . . , ℎ𝑖, ℎ𝑖+1, . . . , ), 𝑒, 𝑍(𝒦, 𝑋) ≀ ℰ⟩ ≃ (𝑍(𝒜) ∩ 𝒦) × 𝑍(△̃(ℬ)).
Proof. The elements of center subgroup have to satisfy the condition: 𝑓 : 𝑋 → 𝐵 such
is constant on each orbit 𝒪𝑗 of action 𝒜 on 𝑋 i.e. 𝑓(𝑥) = 𝑏𝑖 for any 𝑥 ∈ 𝒪𝑗 . Also every
𝑏𝑥 : 𝑏𝑥 ∈ 𝑍(ℬ) . Indeed the elements of form (1; ℎ, ℎ, . . . , ℎ⏟  ⏞  

𝑛

) will not be changed by action of

conjugation of any element from 𝒜 because any permutation elements coordinate of diagonal
of ℬ𝑛 does not change it. Also ℎ commutes with any element of base of (𝒜, 𝑋) ≀ ℬ because ℎ
from center of ℬ . Since the action is defined by shift on finite set 𝑋 , |𝑋| = 𝑛 is not faithfully,
then its kernel 𝒦 ̸= 𝐸 which confirms the proposition. Also elements of subgroup (𝒜, 𝑋) ≀ ℰ)
belongs to 𝑍((𝒜, 𝑋) ≀ ℬ) iff it acts trivial on 𝑋 . 2

Example 1 If 𝒜 = Z then a center 𝑍((Z, 𝑋) ≀ ℬ) =
⟨(1; ℎ, ℎ, . . . , ℎ⏟  ⏞  

𝑛

), 𝑒, 𝑛Znℰ : ℎ ∈ 𝑍(△(ℬ𝑛))⟩ . Since the action defined by shift on finite set 𝑋

is not faithfully, and its kernel is isomorphic to 𝑛Z because cyclic shift on 𝑛 coordinates is
invariant on 𝑋 .

Generating set for commutator subgroup (Z𝑛 ≀ Z𝑚)′ , where Z𝑛, Z𝑚 have presentation in
additive form, is the following:

ℎ1 = (0; 1, 0, . . . ,𝑚− 1) ,

ℎ2 = (0; 0, 1, 0, . . . ,𝑚− 1) ,

...

ℎ𝑛−1 = (0; 0, . . . , 1,𝑚− 1) .

Thus, it consist of 𝑛 tableaux of form ℎ𝑖 = (ℎ𝑖1, . . . , ℎ𝑖𝑚) and relations for coordinate of any
tableau ℎ𝑖, 𝑖 ∈ {1, . . . , 𝑛− 1} is

ℎ𝑖1 + · · · + ℎ𝑖𝑛−1 ≡ 0(mod 𝑚).
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According to Theorem 3, for wreath product of abelian groups presented in multiplicative form,
this relation has the form

𝑛∏︁
𝑖=1

ℎ𝑖𝑓𝑖𝜋𝑎ℎ
−1
𝑖𝜋𝑎𝜋𝑏

𝑓−1
𝑖
𝜋𝑎𝜋𝑏𝜋

−1
𝑎

[ℎ, 𝑓 ] =
𝑛∏︁

𝑖=1

(ℎ𝑖𝑓𝑖𝜋𝑎ℎ
−1
𝑖𝜋𝑎𝜋𝑏

𝑓−1
𝑖
𝜋𝑎𝜋𝑏𝜋

−1
𝑎

𝑖+2∏︁
𝑗=𝑖+1

[︀
ℎ𝑗, 𝑓𝑗𝜋𝑎

]︀
) = 𝑒.

Example 2 If 𝐺 = Z𝑛 ≀ Z𝑚 is standard wreath product, then 𝑑(𝐺′) = 𝑛− 1 .
Let 𝐺 = 𝑍 ≀𝑋𝑍 and 𝐺 = 𝐴≀𝑋𝐵 be a restricted wreath product, where only 𝑛 non-trivial

elements in coordinates of base of wreath product which are indexed by elements from 𝑋 , in
degenerated case | 𝑋 |= 𝑛 . 𝑍 acts on 𝑋 by left shift. Also 𝐴 acts transitively from left.

Remark 1 The quotient group of a restricted wreath products 𝐺 = 𝑍 ≀𝑋 𝑍 by a
commutator subgroup is isomorphic to Z × Z . In previous conditions if 𝐺 = 𝐴 ≀𝑋 𝐵 then,
𝐺/𝐺′ = 𝐴/𝐴′ × 𝐵/𝐵′ . If 𝐺 = 𝑍𝑛 ≀ 𝑍𝑚 , where (𝑚, 𝑛) = 1 , then 𝑑(𝐺/𝐺′) = 1 . If 𝐺 = 𝑍 ≀ 𝑍
is an unrestricted regular wreath product then 𝐺/𝐺′ ≃ 𝑍 × 𝐸 ≃ 𝑍 .
Proof. Consider the element of 𝐺 = 𝐴 ≀𝑋 ℬ , where 𝐴 can be 𝑍 which acts on 𝑋 by left
shift, then elements of commutator subgroup has form:
[𝑒; . . . , ℎ−𝑛, . . . , ℎ0, ℎ1, . . . , ℎ𝑛, . . . , ] , where ℎ𝑖 ∈ 𝐵 . According to Corollary 4.9 [12] the
commutator of elements ℎ = [𝑎;ℎ1, . . . , ℎ𝑛] , 𝑔 = [𝑏; 𝑔1, . . . , 𝑔𝑛] , 𝑔, ℎ ∈ 𝐺 satisfies the condition

(8), which for case where 𝐵 is abelian such:
𝑛∏︀

𝑖=1

ℎ𝑖𝑔𝑎(𝑖)ℎ
−1
𝑎𝑏(𝑖)𝑔

−1
𝑎𝑏𝑎−1(𝑖) = 𝑒, where 𝑔𝑖, ℎ𝑖 are non

trivial coordinates from base of group, 𝑎, 𝑏 ∈ 𝐴 , 𝑔𝑖, ℎ𝑗 ∈ 𝐵 . The commutator with the shifted
coordinate ℎ𝑖𝑔𝑎(𝑖)ℎ

−1
𝑎𝑏(𝑖)𝑔

−1
𝑎𝑏𝑎−1(𝑖) appears within the 𝑖 -th coordinate position due to action of 𝐴 .

According to Corollary 4.9 [12] the set of elements satisfying condition (8) forms a commutator.
Also the equivalent condition can be formulated:

𝑛∏︁
𝑖=1

ℎ𝑖𝑔𝑖ℎ
−1
𝑖 𝑔−1

𝑖 ∈ ℬ′, (9)

Therefore, if ℬ is abelian an element ℎ of 𝐺 belongs to 𝐺′ iff ℎ satisfy a condition:
𝑛∏︀

𝑖=1

ℎ𝑖 = 𝑒 .

For unrestricted wreath product to show that all base of wreath product is in the
commutator subgroup we choose an element [𝑒; . . . , ℎ−1, ℎ0, ℎ1, . . .] , where ℎ𝑖 is variable, and
form a commutator which is an arbitrary element [𝑒; . . . , 𝑔−1, 𝑔0, 𝑔1, . . .] of wreath product base:
[𝑒; . . . , ℎ−1, ℎ0, ℎ1, . . .][𝜎; 𝑒, 𝑒, . . . , 𝑒][𝑒; . . . , ℎ−1

−1, ℎ
−1
0 , ℎ−1

1 , . . .][𝜎−1; 𝑒, 𝑒, . . . , 𝑒] =
= [𝑒; . . . , 𝑔−1, 𝑔0, 𝑔1, . . .]. For convenience we present 𝑍 in additive form. Then to previous
equality holds the following equations have to be satisfied: ℎ0−ℎ1 = 𝑔0, ℎ1−ℎ2 = 0, ℎ2−ℎ3 = 0, ....
it implies that ℎ1 = ℎ0 − 1 , ℎ2 = ℎ1 , ℎ3 = ℎ2 , ... ℎ𝑖 + 1 = ℎ𝑖 . Therefore ℎ𝑖 = 0, 𝑖 > 1 .
From other side we have ℎ−1 − ℎ0 = 𝑔0, ℎ−1 − ℎ−2 = 0, ℎ−2 − ℎ−3 = 0, .... so ℎ−𝑖 = 𝑔0, for all
𝑖 < 0 . That is impossible in the restricted case but possible in the unrestricted. As a corollary
𝐺/𝐺′ ≃ 𝑍 × 𝑍 for restricted case. Thus, for unrestricted case all base of 𝐺 is in 𝐺′ as a
corollary 𝐺/𝐺′ ≃ 𝑍 × 𝐸 .

Thus, this group is a subdirect product of 𝐵 ×𝐵 × · · · ×𝐵⏟  ⏞  
𝑛

with the additional condi-

tion (9) where, because for any element of the subgroup of coordinates there exists a surjecti-
ve homomorphism acting upon 𝐵 , we can conclude that 𝐺′ must be a subdirect product.
The commutator subgroup is the kernel of homomorphism 𝜙 : 𝐺 � 𝐺/𝐺′ . More precisely,
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𝐺 = (𝑍,𝑋) ≀ (𝑍, 𝑌 )� 𝐺/𝐺′

≃ 𝑍/𝑍 ′×𝑍/𝑍 ′ = Z×Z . In case 𝐺 = 𝐴 ≀ℬ the 𝑘𝑒𝑟𝜙 has the same structure, the homomorphi-

sm 𝜙 maps those elements of 𝐵𝑛 , as base of 𝐺 , which satisfy
𝑛∏︀

𝑖=1

ℎ𝑖 = 𝑒 , i.e. the elements

of 𝐵′ in 𝑒 of the group 𝐺/𝐺′ . Thus, 𝑘𝑒𝑟𝜙 = 𝐺′ . To show that the properties of injectivity
and surjectivity hold for this homomorphism, we chose the elements from 𝐺 which have the
form [𝑒; 𝑒, . . . 𝑒, ℎ, 𝑒, . . . , 𝑒] , where ℎ /∈ 𝐺′ , corresponding to a specimen from the quotient group
𝐵/𝐵′ . Also we chose independently, an element of the form [𝑎; 𝑒, . . . , 𝑒, . . . , 𝑒] corresponding to
a specimen of the quotient group 𝐴/𝐴′ . Therefore, we must have a one-to-one correspondence
between 𝐺/𝐺′ and 𝐴/𝐴′ ×𝐵/𝐵′ . In this case, we obtain 𝐺/𝐺′ ≃

[︀
𝐴/𝐴′ × 𝐵/𝐵′

]︀
.

In the scenario when the action of 𝑍 upon the 𝑛 elements from the set is isomorphic
to the action of 𝑍𝑛 elements on the set or the action of the 𝑍𝑛 elements on itself. In case
𝐺 = 𝑍 ≀ 𝑍 we have 𝐺/𝐺′ ≃ [Z× Z] . 2

For the group 𝐺 = 𝑍𝑛 ≀ 𝑍𝑚 the same is true with 𝐺/𝐺′ ≃ [Z𝑛 × Z𝑚] and dependently
of fact of (𝑚,𝑛) = 1 or not can admits one or two generators. For the group 𝐺 = 𝑍𝑛 ≀ 𝑍𝑚 it

should be noted that the same is true. In the general case,
𝑛

≀
𝑖=1

Z𝑚𝑖
can have only one generator

more than the quotient by commutator has.

Application to Geometric Groups of Diffeomorphisms Acting on the Möbius Band
Maksymenko S. [11] studied various different geometric objects and considered the actions

of diffeomorphisms on them. We now consider the algebraic structure and the generators for a
group of such type.

Let 𝑀 be a smooth compact connected surface, 𝑃 be either the real line or the circle,
𝑓 : 𝑀 → 𝑃 be a smooth map, and 𝑂(𝑓) be the orbit of 𝑓 with respect to the right action of
the group Diff(𝑀)(𝒟(𝑀) ) of diffeomorphisms of 𝑀 . We assume that at each critical point,
the map 𝑓 is equivalent to a homogeneous polynomial in two variables without multiple factors.
Conversely, it should be noted that every group obtained in the way described will be isomorphic
to 𝐺(𝑓) for some smooth map 𝑓 : 𝑀 → 𝑃 .

We will now specify the object and the construction of orbits under the action of the
group diffeomorphisms. Let 𝑓 : 𝑀 → R be a Morse function on a connected compact surface
𝑀 . Let 𝒮(𝑓) and 𝑂𝑓 = 𝒪(𝑓) be the stabiliser and the orbit of 𝑓 with respect to the right
action of the group of diffeomorphisms 𝒟(𝑀) respectively.

Let 𝑋𝑓 denote the partition of 𝑀 whose elements are the connected components of
level-sets 𝑓−1(𝑐) of 𝑓 . It should be noted here that an element 𝑔 ∈ 𝑋𝑓 is called critical if it
contains a critical point of 𝑓 , otherwise, the elements is called regular. It is well known within
this research domain that the factor space 𝑀/𝑋𝑓 , has a natural structure of a finite graph and
is entitled the Kronrod-Reeb graph.

In our case, the diffeomorphisms act upon the Möbius band. Let 𝑀 now be a compact
not orientable surface and 𝜔 be a volume from 𝑀 which has ℎ -form of the Möbius band. For
a smooth map 𝑓 : 𝑀 → 𝑅 , denote by 𝑆(𝑓) , the subgroup 𝒟(𝑀) of diffeomorphisms ℎ (of
𝑀 ) which preserve 𝑓 , i.e. those satisfying the relation 𝑓 ∘ ℎ = 𝑓 .

This group is associated with 𝑆𝑖𝑑(𝑓) , which is a subgroup of stabiliser elements isotopic to
the identity, i.e. 𝜋1(𝑂𝑓 , 𝑓) ≃ 𝜋0𝑆𝑖𝑑(𝑓) , where the last isomorphism arises due to locally trivial
bundle. Because there are a locally trivial bundle of homotopical groups with base 𝜋1 (𝑂𝑓 , 𝑓)
and layer 𝜋0𝑆𝑖𝑑 (𝑓) , this means that an exact sequence of homotopic groups and locally trivial
bundle of homotopical groups give an explanation of the isomorphism 𝜋1 (𝑂𝑓 , 𝑓) ≃ 𝜋0𝑆𝑖𝑑 (𝑓) .
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This locally trivial bundle of homotopical groups induce an exact sequence of homotopic groups
of that bundle. Now since the group of diffeomorphisms is infinitely dimensional, we have found
the connected components. This group is associated with the action of the group 𝑆(𝑓)

𝑆𝑖𝑑(𝑓)
upon

splitting into the function level lines 𝑓 .
In our case, the Morse function upon 𝑀 has two local extremes, which are the points

of local maximum. Moreover, the Morse function 𝑓 must have critical sets with exactly one
saddle point. The lines of levels around a local maximum point of 𝑓 have the form of coaxial
circles, where these lines are determined by the polynomial with form ±(𝑥2 + 𝑦2) + 𝑐 .

Being a little more precise, we will now consider the function of Morse 𝑓 on 𝑀 , which
satisfies the following three properties:

1. 𝑓 is constant on the bound 𝑀 ;

2. there are two points of maximum at a saddle point;

3. at the two points of maximum, the values of the function are equal, i.e. at every critical
point of 𝑓 , the germ of 𝑓 is 𝐶∞ equivalent to some homogeneous polynomial in two
real variables without multiple factors.

Let 𝑓 : 𝑀 → 𝑅 now be a 𝐶∞ Morse function. We note here that since the polynomial
±(𝑥2+𝑦2)+𝑐 is homogeneous and has no multiple factors, it follows (from the celebrated Morse
Lemma) that the space of all Morse maps belongs to the space of maps ℱ(ℳ,𝒫) , where 𝑓
here only has isolated critical points and 𝒫 is either the real line R or the circle 𝑆1 .

Let 𝒟(𝑀) be a group of diffeomorphisms which preserve the Morse function 𝑓 on 𝑀 .
We know from the results of Maksymenko S. [11] that 𝜋0(𝐷(𝑀)) ≃ Z . Let there exist upon
𝑀 , 𝑛 identical regions 𝑋𝑖 (critical sets) which have, for example, the form of doubles, meaning
that 𝑓 has two critical points in each 𝑋𝑖 and additionally, that 𝑋𝑖 are the domains of simple
connectedness.

Consider a group 𝐻 of automorphisms of 𝑀 which are induced by the action of di-
ffeomorphisms ℎ of a group 𝐷(𝑀) which preserve the Möbius function 𝑓 . In other words,
the ℎ here are from the stabiliser 𝑆 (𝑓) ▷ 𝐷(𝑀) . We note that the generators with stabilisers
with the right action by diffeomorphisms 𝜋0𝑆(𝑓 |𝑋𝑖,𝜕𝑋𝑖) are 𝜏𝑖 . The generators of the cyclic
group 𝑍 which define a shift are 𝜌 . Since the group action is continuous, this implies that the
𝜌 can realize only cyclic shifts, else one would change the domains of simplicity 𝑋𝑖 order.

Assume there are 𝑛 critical sets 𝑋𝑖 on 𝑀 . The automorphism group 𝐻 ≃ 𝜋1(𝑂𝑓 , 𝑓)
has exactly two subgroups Z which correspond to the rotation of 𝑀 , whose critical sets
𝑋𝑖 have not changed the order of 𝑋𝑖 and (Z)𝑛 denotes the subgroup of automorphisms of
𝑛 critical sets. Analogously to previous investigations [11, 16, 18], there exists a short exact
sequence 0 → Z𝑚 → 𝜋1(𝑂𝑓 , 𝑓) → Z → 0 , where the 𝐺 -group of automorphisms are Reeb’s
(Kronrod-Reeb) graph [11] and hence 𝑂𝑓 (𝑓) is an orbit under action of diffeomorphism group.

The application of such an action results in a surjective epimorphism to a group Z , which
has the left inverse and arises as a result of splitting. The automorphism group therefore has the
structure of a semi-direct product (Z)𝑛o Z . This is in agreement with the work of Maksymenko
S. [11] who considers a similar scenario but for a different group and set (surface). Moreover,
we note that this Morse function 𝑓 has critical sets 𝑋𝑖 on Möbius band (𝑀) with one saddle
point.

The minimal set of generators for the fundamental group 𝜋1(𝑂𝑓 , 𝑓) of the orbit of the
function 𝑓 with respect to the action of the group of diffeomorphisms of non-moving 𝜕𝑀 is
found in the next theorem.
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We note that since the action of the group of diffeomorphisms on 𝑛 -critical sets of 𝑀
have been determined and described, the next thing to be considered is how this group has
the correspondent to this action structure 𝜋1(𝑂𝑓 , 𝑓) ≃ Zn(Z)𝑛. We will denote by 𝐻 , the
fundamental group 𝜋1(𝑂𝑓 , 𝑓) .

The first generator is 𝜌 since it realises the shift of the Möbius band. The second, 𝜏 ,
realises the rotation of domains 𝑋𝑖 of simple connectedness upon the Möbius band when passing
through its twisting point. In other words, 𝜏 acts by the automorphism by permutation of sheets
of doubles 𝑋𝑖 with the winding of outer adjacency on each double 𝑋𝑖 . Thus, we conclude that
𝜏𝑖 has infinite order.

Bounds on these domains are the lines of levels of function 𝑓 upon these domains, or in
other words, the sets of points with 𝑓 = 𝑐𝑜𝑛𝑠𝑡1 . We shall now prove that the action of the first
generator 𝜌 of the group defines the homomorphism in 𝐴𝑢𝑡(𝑍𝑛) ..

Theorem 5. The group 𝐻 ≃ Zn(Z)𝑛 = ⟨𝜌, 𝜏⟩ with defined above homomorphism in 𝐴𝑢𝑡𝑍𝑛

has two generators and non trivial relations

𝜌𝑛𝜏𝜌−𝑛 = 𝜏−1, 𝜌𝑖𝜏𝜌−𝑖𝜌𝑗𝜏𝜌−𝑗 = 𝜌𝑗𝜏𝜌−𝑗𝜌𝑖𝜏𝜌−𝑖, 0 < 𝑖, 𝑗 < 𝑛.

Also this group admits another presentation in generators and relations⟨︀
𝜌, 𝜏1, . . . , 𝜏𝑛

⃒⃒
𝜌𝜏𝑖(mod 𝑛)𝜌

−1 = 𝜏𝑖+1(mod 𝑛) , 𝜏𝑖𝜏𝑗 = 𝜏𝑗𝜏𝑖, 𝑖, 𝑗 6 𝑛
⟩︀
. (10)

Proof. From the description above, we have that the action of the first generator of the
group, 𝜌 , defines the homomorphism in the 𝐴𝑢𝑡(𝑍𝑛 ). There exists such a diffeomorphism
from 𝐷(𝑀) , called the Dehn twist, which has an infinite order since it makes a winding of
outer adjacency (refer to Dehn twist in [6]) on the doubles 𝑋𝑖 , and it belongs to stabiliser
𝑆(𝑓) . The generator 𝜏 must therefore correspond to this diffeomorphism.

Let 𝑥𝑖 denote the number of domains from 𝑋𝑖 . The action of the first generator 𝜌 , defines
the homomorphism 𝜌(𝑥1, . . . , 𝑥𝑛) = 𝜙𝜌(𝑥1, . . . , 𝑥𝑛) , where 𝜙(𝑥1, . . . , 𝑥𝑛) = (−𝑥𝑛, 𝑥1, . . . , 𝑥𝑛−1) .
It should be noted that this action could be equivalently represented as

𝜙𝜌(𝑥1, . . . , 𝑥𝑛) = ((−1)[
𝜌+𝑛−1

𝑛 ](−𝑥(1−𝜌)𝑚𝑜𝑑𝑛), . . . ,

(−1)[
𝜌+𝑛−𝑘

𝑛 ]𝑥(𝑘−𝜌)𝑚𝑜𝑑𝑛, . . . , (−1)[
𝜌
𝑛 ]𝑥(𝑛−𝜌)𝑚𝑜𝑑𝑛𝑥𝑛).

We extend the action of 𝜌 onto an arbitrary 𝛼 ∈ Z . This action involves sequential shifts
of 𝑋𝑖 along the orbit on 𝑀 defined as 𝛼 . We have

𝜙𝛼(𝑥1, . . . , 𝑥𝑛) = ((−1)[
𝛼+𝑛−1

𝑛 ](−𝑥(1−𝛼)𝑚𝑜𝑑𝑛), . . .

. . . , (−1)[
𝛼+𝑛−𝑘

𝑛 ]𝑥(𝑘−𝛼)𝑚𝑜𝑑𝑛, . . . , (−1)[
𝛼
𝑛 ]𝑥(𝑛−𝛼)𝑚𝑜𝑑𝑛𝑥𝑛).

We will now consider two sets. The first set is 𝛼 = {1, 2, . . . , 𝑛} . As an example, if
𝛼 = 1 , then we have

[︀
𝛼+𝑛−1

𝑛

]︀
=
[︀
1+𝑛−1

𝑛

]︀
= 1 . Additionally, we find the numbers 𝑚 ∈ 𝑁 such

that
[︀
𝑚+𝑛−1

𝑛

]︀
= 1 and the numbers that are congruent to these 𝑚 modulo 2𝑛 .

The second set is 𝛼 = {0,−1,−2, . . . ,−𝑛 + 1} . Similarly, we note that congruence
modulo 2𝑛 is of interest. As an example, if 𝛼 = −1 , then we have

[︀
𝛼+𝑛−1

𝑛

]︀
=
[︀−1+𝑛−1

𝑛

]︀
= 0 .

Hence, 𝛼 ∈ Z , 𝛼 = 𝑙𝜌 is the number of shifts defined by 𝛼 , while 𝜏𝑖 corresponds to the action
of automorphism by permutation with winding of outer adjacency (Dehn twist in [6]) on the
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doubles 𝑋𝑖 . We conclude that 𝜏𝑖 therefore has an infinite order due to the Dehn twist. The
value of the sign of the 𝑥𝑖 indicates the presence of a rotation of the doubles or its absence.

The relations for the non-minimal generating set is precisely⟨︀
𝜌, 𝜏1, . . . , 𝜏𝑛

⃒⃒
𝜌𝜏𝑖(mod𝑛)𝜌

−1 = 𝜏𝑖+1(mod𝑛)

⟩︀
.

This formulation yields that the relations for the minimal generating set is ⟨𝜌, 𝜏⟩ are⟨︀
𝜌2𝑛𝜏1𝜌

−2𝑛 = 𝜏1, |𝜏1| = |𝜌| = ∞, 𝜏1 = 𝜏
⟩︀
,

where 𝜏1 = 𝜏 and since 𝜌2𝑛𝜏𝑖𝜌
−2𝑛 = 𝜏𝑖+1 we transform our minimal generating set into a

canonical generating set of the 𝑛+ 1 elements given by ⟨𝜌, 𝜏1, 𝜏2, . . . , 𝜏𝑛⟩ .
It is known that the generators of the semidirect product 𝐺n𝐻 may be presented in the

form (𝑔, ℎ) . We now utilise this form to say that the generators of 𝑍𝑛 have the form of vectors
𝜏1 = (ℎ1, 𝑒, 𝑒,В . . . , 𝑒, ) , 𝜏2 = (𝑒, ℎ2, 𝑒,В . . . , 𝑒, ),В . . . , 𝜏𝑛 = (𝑒, 𝑒,В . . . , ℎ𝑛) . Making us of the
operation of conjugation for (𝑒, ℎ1) = 𝜏1 = 𝜏 , allows us to express the second generator of 𝑍𝑛 .
Note that this is by (𝑔, 𝑒) = 𝜌 , where ℎ1 is one of generators of 𝑍𝑛 and 𝑔 is generator of 𝑍 .

(𝑔, 𝑒)−1 (𝑒, 𝜏1) (𝑔, 𝑒) = (𝑒, 𝜏2) .

Analogously, we find
(𝑔, 𝑒)−1 (𝑒, 𝜏2) (𝑔, 𝑒) = (𝑒, 𝜏3) ,

and, for a general term, we find

(𝑔, 𝑒)−1 (𝑒, 𝜏𝑛−1) (𝑔, 𝑒) = (𝑒, 𝜏𝑛) .

We show that there are not otherwise independent relations within the group 𝐻 . For this
group 𝐻 , all canonical words have the form

𝜌𝑘𝜏 𝑠11 𝜏
𝑠2
2 . . . 𝜏 𝑠𝑛𝑛 . (11)

This form follows from the form of semidirect product elements. We now prove using (10)
and reductions of reciprocals elements, that we may transform any finite non-trivial word of
𝐹𝑛+1 to the form (11). Additionally, we shall prove that the set of all words which maps trivially
by a surjective homomorphism, with a kernel which is a normal closure of relations from the set
𝑅 from (10), are those coincides with trivial words in the group 𝜋(𝑂𝑓 , 𝑓) . For this purpose,
we prove the transformation equivalence 𝜏𝑖𝜌 = 𝜌𝜏𝑖+1 . In fact,

𝜏𝑖(mod𝑛)𝜌 = 𝜌𝜌−1𝜏𝑖(mod𝑛)𝜌 = 𝜌𝜏(𝑖+1)(mod𝑛). (12)

It should be noted that the relation 𝜏𝑖𝜏𝑗 = 𝜏𝑗𝜏𝑖 holds since automorphisms of 𝑋𝑖 and 𝑋𝑗 are
independent of each other. Therefore, using this transformation, we can rearrange all the 𝜌 to
be in the first position in the word over the alphabet {𝜌, 𝜏1, . . . , 𝜏𝑛} .

We will show that normal closure of the relations 𝜌𝜏𝑖(mod𝑛)𝜌
−1 = 𝜏𝑖+1(mod 𝑛) , with

𝜏𝑖𝜏𝑗 = 𝜏𝑗𝜏𝑖 , determines the kernel of the surjective homomorphism 𝜓 from 𝐹𝑛+1 to 𝐻 . The
images of such a mapping are the canonical words (11) which have the form of 𝐻 . The form of
these canonical words are determined by the semidirect product Zn(Z)𝑛 and its automorphi-
sms. This mapping 𝜙 has the form

𝑥𝑝1𝑗1𝑥
𝑝2
𝑗2
𝑥𝑝3𝑗3 . . . 𝑥

𝑝𝑚
𝑗𝑚

↦→ 𝜌𝑘𝜏 𝑠11 𝜏
𝑠2
2 . . . 𝜏 𝑠𝑛𝑛 ,

Skuratovskii R., Williams A. 91



ISSN 1817-2237. Вiсник ДонНУ. Сер. А: Природничi науки. - 2019.- № 1-2

where 𝑥𝑗𝑖 ∈ 𝐹𝑛+1, 𝑥
𝑝1
𝑗1
𝑥𝑝2𝑗2𝑥

𝑝3
𝑗3
. . . 𝑥𝑝𝑚𝑗𝑚 ∈ 𝐹𝑛+1 and

𝑛∑︀
𝑖=1

𝑠𝑖 + 𝑘 =
𝑚∑︀
𝑙=1

𝑝𝑙.

For this purpose, we use the transformation equivalence 𝜏𝑖𝜌 = 𝜌𝜏𝑖+1. Making use this
transformation allows us to therefore rearrange all 𝜌 to the first position in the word over the
alphabet {𝜌, 𝜏1, . . . , 𝜏𝑛} . Being a little more precise, this conversion is expressed as

𝜏𝑖(mod𝑛)𝜌 = 𝜌𝜌−1𝜏𝑖(mod𝑛)𝜌 = 𝜌𝜏(𝑖+1)(mod𝑛).

The kernel of surjective homomorphism 𝜓 contains exactly those words that, after mappi-
ng, 𝜓 becomes the trivial words in the group 𝐻 since those trivial words have the form
𝜌0𝜏 01 𝜏

0
2 . . . 𝜏

0
𝑛 .

Note that an arbitrary word from 𝑘𝑒𝑟(𝜓) may be transformed due to (12) into
𝜌0𝜏 𝑖11 𝜏

𝑖2
2 . . . 𝜏 𝑖𝑛𝑛 , where 𝑖𝑘 = 0 for all 𝑘 . In fact, 𝑘𝑒𝑟(𝜓) is the normal closure of the relati-

ons (10) and hence it consist of the words 𝜌𝜏𝑖(mod 𝑛)𝜌
−1𝜏−1

𝑖+1(mod 𝑛) , with [𝜏𝑖, 𝜏𝑖+1] .

In particular, the word 𝜌𝜏𝑖(mod 𝑛)𝜌
−1𝜏−1

𝑖+1(mod𝑛) transforms by (12) to

𝜌𝜌−1𝜏𝑖+1(mod𝑛)𝜏
−1
𝑖+1(mod𝑛). The words from the normal closure must therefore have zero sum of

powers for each generator.
In the real group 𝐻 , with the reduced canonical words (11), where all generators have

infinite order, only those words with zero exponents of generators are trivial. We have therefore
found all such relations. which concludes the proof. 2

It should be noted that the main property of the homomorphism 𝜙 , from 𝐹𝑛+1 onto 𝐻 ,
holds due to the same transformation (12). We now consider

𝜙(𝑎𝑏) = 𝜙(𝑎)𝜙(𝑏) = 𝜙
(︀
𝑥𝑝1𝑗1𝑥

𝑝2
𝑗2
. . . 𝑥𝑝𝑚𝑗𝑚

)︀
𝜙
(︀
𝑥𝑞1𝑖1𝑥

𝑞2
𝑖2
. . . 𝑥𝑞𝑚𝑖𝑚

)︀
= 𝜌𝑘𝜏 𝑠11 𝜏

𝑠2
2 . . . 𝜏 𝑠𝑛𝑛 𝜌𝑚𝜏 𝑗11 𝜏

𝑗2
2 . . . 𝜏 𝑗𝑛𝑛 = 𝜌𝑘+𝑚𝜏 𝑓11 𝜏

𝑓2
2 . . . 𝜏 𝑓𝑛𝑛

Thus, the main property of the homomorphism holds. It should be noted that such a relation
𝜌2𝑛𝜏1𝜌

−2𝑛 = 𝜏1 is typical for a wreath product.
The homomorphism from the group Z into the group 𝐴𝑢𝑡Z𝑛 , determining a shift of

generators (𝜏1, . . . , 𝜏𝑛) of Z𝑛 , can be equivalently presented by the matrix 𝜑 . For the case
𝑛 = 4 , 𝜑 has the form

𝜑 =

⎛⎜⎜⎝
0 0 0 −1
1 0 0 0
0 1 0 0
0 0 1 0

⎞⎟⎟⎠ .

The generators of the subgroup Z𝑛 can be presented in the form of vectors. These vectors are
precisely

(ℎ1, 𝑒, 𝑒, 𝑒), (𝑒, ℎ2, 𝑒, 𝑒), . . . , (𝑒, 𝑒, 𝑒, ℎ4).

In order to check the relation for the case 𝑛 = 4 , we consider

𝜑4 =

⎛⎜⎜⎝
−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎠ .

Thus, 𝜑8 = 𝐸 and our relation 𝜌2𝑛𝜏1𝜌
−2𝑛 = 𝜏1 holds.
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It should be noted that the research of Maksymenko S. [11] tells us that a group of this
kind arises as a fundamental group of the orbit 𝜋1(𝑂𝑓 , 𝑓) for some Morse function 𝑓 which,
as described above, acts upon the Möbius band 𝑀 .

Note that we have derived the relation 𝜌2𝑛𝜏𝜌−2𝑛 = 𝜏 . If we now multiply this from left
on 𝜏−1 , we can equivalently express this as

𝜏−1𝜌2𝑛𝜏𝜌−2𝑛 = 𝑒.

In a similar fashion, the multiplication from the right on 𝜌2𝑛 obtains

𝜏−1𝜌2𝑛𝜏 = 𝜌2𝑛.

One such relation characterises the Bauslag-Soliter group. This is the group 𝐺(𝑚; 𝑘) ,
which has the form 𝐺(𝑚;𝑛) =

⟨︀
𝑎, 𝑏; 𝑎−1𝑏𝑚𝑎 = 𝑏𝑘

⟩︀
, where 𝑚, 𝑘 ∈ Z . Note the Bauslag-Soliter

group has only one relation.

Corollary 1. A center of the group 𝐻 = Zn𝜙(Z)𝑛 is a normal closure of sets: diagonal of Z𝑛 ,
trivial an element and kernel of action by conjugation that is generated by 𝜌2𝑛 ( ⟨𝜌2𝑛⟩ ≃ 2𝑛Z ).
In other words,

𝑍(𝐻) = ⟨(1; ℎ, ℎ, . . . , ℎ⏟  ⏞  
𝑛

), 𝑒, 2𝑛Z n E⟩,

where ℎ, 𝑔 ∈ Z . Thus, 𝑍(𝐻) ≃ 2𝑛Z×Z. Since the action is defined by conjugation and relation
𝜌2𝑛𝜏𝑖𝜌

−2𝑛 = 𝜏𝑖 holds then the element 𝜌2𝑛 commutates with every 𝜏𝑖 . So subgroup stabilise all
𝑥𝑖 of 𝑍 -space 𝑀 . Other words subgroup ⟨𝜌2𝑛⟩ belongs to kernel of action 𝜑 . Besides the
element (1; ℎ, ℎ, . . . , ℎ⏟  ⏞  

𝑛

) will not be changed by action of conjugation of any element from 𝐻

because any permutation elements coordinate of diagonal of Z𝑛 does not change it.

We can generalise a result of Meldrum J. [12] because we consider not only the permutation
wreath product groups, but the group 𝒜 does not have to act upon the set 𝑋 faithfully, hence
(𝒜, 𝑋) ≀ ℬ . Recall that an action is said to be faithful if for every 𝑔 ∈ 𝐺 , there exists 𝑥 from
𝐺 -space 𝑋 such that 𝑥𝑔 ̸= 𝑥 . We consider wreath products with no regular actions of the
active group Z .

Let 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} be the Z -space. If an action by conjugation determines a shift
of the copies of Z from the direct product Z𝑛 then, we have not found a standard wreath
product (Z, 𝑋) ≀ Z which is a semidirect product of Z and

∏︀
𝑥𝑖∈𝑋

Z , i.e. Zn𝜑(Z)𝑛 . Thus, we

observe the following corollary holds.

Corollary 2. The center of the group Zn𝜑(Z)𝑛 ≃ (Z, 𝑋) ≀Z consists of normal closure of the
diagonal of Z𝑛 , a trivial element and the kernel of action by conjugation, i.e. 𝑛Z . In other
words,

𝑍(𝐻) = ( 1; ℎ, ℎ, . . . , ℎ⏟  ⏞  
𝑛

), 𝑒, (𝑛Z, 𝑋) ≀ E⟩ ≃ 𝑛Z× Z,

where ℎ, 𝑔 ∈ Z , 𝑍(𝐻) ≃ 𝑛Z× Z .

Proof. The proof follows immediately from Corollary 1 by utilising the kernel of action of
𝜑 . The stabiliser of such an action over the Z -space 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} is the subgroup 𝑛Z .
Additionally, the kernel of this action has elements from the diagonal of Z𝑛 .
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It should be noted, if we have 𝐺 = Z ≀
𝑋𝑚

Z ≀
𝑋𝑛

Z, where |𝑋𝑚| = 𝑚 and |𝑋𝑛| = 𝑛 , then

the action is defined by the shift upon finite set 𝑋𝑛 . In this case, we find that |𝑋| = 𝑛 is not
faithful and its kernel is also isomorphic to 𝑛Z since the cyclic shift on the 𝑛 coordinates is
invariant on 𝑋 . Note that the action is defined by the shift on the finite set 𝑋𝑚 is not faithful
and its kernel is isomorphic to 𝑚Z . Additionally, within this kernel of action is the elements
from the diagonal of Z𝑛𝑚 which are isomorphic to Z . Thus, its center is 𝑍(𝐺) ≃ 𝑛Z×𝑚Z×Z
which concludes the proof. 2

Remark 2 The center of a group of the form Zn𝜑(ℬ)𝑛 ≃ (Z, 𝑋) ≀ℬ generates, by normal
closure of: center of diagonal of ℬ𝑛 , trivial an element, and 𝑛Z ≀

𝑋
ℰ .

Conclusions
The minimal generating set and the structure of the group 𝜋0𝑆𝑖𝑑(𝑓) of the orbit one

Morse function have been investigated. The minimal generating set for wreath-cyclic groups
have been constructed.
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МIНIМАЛЬНА СИСТЕМА ТВIРНИХ I СТРУКТУРА ВIНЦЕВОГО
ДОБУТКУ ГРУП, ФУНДАМЕНТАЛЬНА ГРУПА ОРБIТ ФУНКЦIЇ
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2 науковий спiвробiтник iнститу математики Кардiфського университету,
Кардiфский унiверситет, Уельс

РЕЗЮМЕ
Фактор група по комутанту для обмеженого i необмеженого вiнцевого добутку знайдено.
Дослiджено множини твiрних для вiнцевого добутку.

Структура вiнцевого добутку з неточною дiєю активної групи знайдена. Дослiджено
мiнiмальну систему твiрних вiнцевого добукту i його комутанту, властивостi комутанта.

В своїй роботi ми пiдсилюємо свої попереднi результати [18, 21, 20] i будуємо мiнi-
мальну систему твiрних для комутанту вiнцевого добутку як скiнченних так i нескiнченних
груп, також для прямого добутку цих груп. Ми узагальнюємо результ Мелдрума [12] про
комутант вiнцевого добутку, оскiльки розглядаємо не тiльки регулярнi вiнцевi добутки,
ми розглядаємо не регулярнi вiнцевi добутки, де активна група 𝒜 дiє не точно. Комутант
таких груп, система твiрних i центр було дослiджено нами.

Ми розглядаємо новий клас вiнцевоциклiчних геометричних груп. Мiнiмальну систе-
му твiрних для цих груп i їх комутант було знайдено.

Ключовi слова: вiнцевий добуток груп, комутанта вiнцевого добутку, мiнiмаль-
на система твiрних, центр не регулярного вiнцевого добутку груп, фундаментальна гру-
па орбiт функцiї Морса, група диффеоморфiзмiв, що дiє на стрiчцi Мьобiуса.
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МИНИМАЛЬНАЯ СИСТЕМА ОБРАЗУЮЩИХ И СТРУКТУРА
СПЛЕТЕНИЯ ГРУПП, ФУНДАМЕНТАЛЬНАЯ ГРУППА ОРБИТ

ФУНКЦИИ МОРСА

РЕЗЮМЕ
Фактор группу по коммутанту для ограниченного и не ограниченного сплетения найдено.
Исследованы множества образующих для сплетения.

Структура сплетения с неточным действием активной группы найдена. Исследовано
минимальную систему образующих сплетения и его коммутанта, свойства коммутанта.

В этой работе мы усилили предыдущие свои результаты [18, 21, 20] и построили
минимальную систему образующих для коммутанат сплетения как конечных так и беско-
нечных групп, также для прямого произведения этих групп. Мы обобщили результаты
Мелдрума [12] о коммутанте сплетения, поскольку рассматриваем не только регулярные
сплетения а и не регулярные, где активная группа 𝒜 действует не точно. Коммутант
таких групп и его система образующи, центр были исследованы нами.

Рассмотрен новый класс венечноцилических геометрических групп. Минимальную
систему образующих для этих групп и их коммутант было найдено.

Ключевые слова: сплетение групп, коммутант сплетения, минимальная си-
стема образующих, центр не регулярного сплетения груп, фундаментальная группа ор-
бит функции Морса, группа диффеоморфизмов, ее действие на ленте Мебиуса.
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