УДК 533.6.013.42

Ю.Н. Кононов, А.И. Федорчук Донецкий национальный университет, Винница, Украина

ВЛИЯНИЕ ПЕРЕГРУЗКИ НА СВОБОДНЫЕ КОЛЕБАНИЯ КОЛЬЦЕВОЙ НЕВЕСОМОЙ МЕМБРАНЫ, РАСПОЛОЖЕНОЙ НА СВОБОДНОЙ ПОВЕРХНОСТИ ЖИДКОСТИ

Дана оценка влиянию перегрузки на устойчивость колебаний кольцевой мембраны, а также на первую и вторую собственные частоты в зависимости от геометрии полости, натяжения мембраны и глубины заполнения жидкости. Показано, что критические значения натяжения кольцевой мембраны и перегрузки могут быть определены из статической задачи.

Ключевые слова: кольцевая мембрана, свободные колебания, идеальная жидкость.

В линейной постановке рассмотрена задача о свободных колебаниях кольцевой мембраны, расположенной на свободной поверхности идеальной жидкости в жестком коаксиальном цилиндрическом сосуде. Выведено и исследовано частотное уравнение собственных совместных колебаний кольцевой мембраны и жидкости. Показано отсутствие совместных осесимметричных колебаний кольцевой мембраны и жидкости. Оценено влияние перегрузки, натяжения и геометрии мембраны, глубины заполнения жидкости на первую и вторую одноузловую собственную частоту. Показано, что потеря устойчивости плоской формы равновесия мембраны может произойти только при отрицательной перегрузки. Найдены из динамического и статического подходов критические значения величин перегрузки и натяжения мембраны при которых происходит потеря устойчивости. Показано, что они не зависят от глубины заполнения жидкости.

В работе [1], с учетом первой моды по угловой координате, были проведены исследования влияния перегрузки на собственные частоты колебаний упругой круговой безынерционной мембраны, расположенной на свободной поверхности идеальной однородной жидкости, находящееся в прямом круговом цилиндре. Статья [2] обобщает эту задачу на случай двухслойной идеальной жидкости с упругими мембранами на свободной и внутренней поверхностях, а [3] - на случай многослойной идеальной жидкости, разделенной упругими безынерционными мембранами. Инертность мембран учтена в работе [4]. Плоская задача о свободных колебаниях упругой мембраной, расположенной на свободной поверхности идеальной жидкости, находящейся в прямоугольном канале, исследована в работе [5]. Во всех рассмотренных работах поверхность мембраны полагается односвязной. Многосвязные области существенно усложняют рассмотренные выше задачи, т.к. требует удовлетворения дополнительных граничных условий. Работа [7] обобщает результаты статьи [1] на случай кольцевой мембраны. Из последних работ следует отметить работы [8-10], в которых рассмотрена задача об осесимметричных колебаниях упругой мембраны, разделяющей жидкость в жестком двухплотностном круговом цилиндрическом резервуаре применительно к современным капиллярным системам отбора жидкости (КСОЖ).

В настоящей статье обобщены, дополнены и уточнены результаты работ [1] и [7] на случай произвольного числа мод по угловой координате, влияния перегрузки, геометрии и натяжения мембраны, глубины заполнения жидкости на первую и вторую одноузловую собственную частоту. Показано отсутствие совместных осесимметричных колебаний кольцевой мембраны и жидкости и то, что закрепление центра круговой мембраны не влияет на частотный спектр. Найдены критические значения величин перегрузки и натяжения мембраны.

Рассмотрим коаксиальный цилиндрический сосуд внешнего радиуса a и внутреннего b, заполненный до глубины h идеальной однородной несжимаемой жидкостью. На свободной поверхности жидкости находится упругая кольцевая мембрана с погонным усилием T. Мембрана жестко закреплена по внешнему и внутреннему контуру и считается невесомой. Движение жидкости и мембраны будем рассматривать в системе координат Oxyz, расположенной так, что плоскость Oyz совпадает со свободной поверхности в не возмущенном положении, а ось Oz параллельна образующим цилиндра и направлена противоположно вектору ускорения силы тяжести \overline{g} . Задачу будем рассматривать в рамках линейной теории, считая движение жидкости потенциальным.

Уравнения движения рассматриваемой механической системой имеют вид [1]

$$\Delta \Phi = 0, \ \frac{\partial \Phi}{\partial r} \bigg|_{\substack{r=a \\ r=b}} = 0, \ \frac{\partial \Phi}{\partial z} \bigg|_{z=-h} = 0;$$
$$\frac{\partial \Phi}{\partial z} \bigg|_{z=0} = \frac{\partial W}{\partial t}, \tag{1}$$

$$\frac{\partial^2 W}{\partial r^2} + \frac{1}{r} \frac{\partial W}{\partial r} + \frac{1}{r^2} \frac{\partial^2 W}{\partial \theta^2} = \frac{\rho}{T} \left(\frac{\partial \Phi}{\partial t} \Big|_{z=0} + gW \right), \tag{2}$$

$$W\Big|_{\substack{r=a\\r=b}} = 0. \tag{3}$$

Здесь Ф – потенциал скорости жидкости; *ρ* – плотность жидкости; *W* – прогиб мембраны. Собственные колебания мембраны для задачи (1)-(3) будем искать в виде

$$\begin{cases} \Phi(r,\theta,z,t) = \sigma \cos \sigma t \ \varphi_m(r,z) \begin{cases} \cos m\theta \\ \sin m\theta \end{cases}, \\ W(r,\theta,t) = \sin \sigma t \ w_m(r) \begin{cases} \cos m\theta \\ \sin m\theta \end{cases}, \end{cases}$$
(4)

а функцию $\varphi_m(r,z)$ предоставим следующим образом

$$\varphi_m = \sum_{n=1}^{\infty} a_{nm} \tilde{Z}_{nm} \left(z \right) R_m \left(k_{nm} r \right), \tag{5}$$

где $w_m(r)$ – *m*-узловая по угловой координате форма прогиба мембраны; a_{nm} – неизвестная константа;

Собственные функции $R_m(k_{nm}r)$ образуют на [b,a] полную и ортогональную с весом r систему функций, а собственные числа k_{nm} находятся из трансцендентного уравнения (6) [8].

При $\varepsilon = 0$ ($\gamma_{nm} = 0$) уравнение (6) имеет вид $J'_m(\mu) = 0$. Подставив (4)-(5) в (1), получим

$$w_m(r) = \sum_{n=1}^{\infty} a_{nm} k_{nm} \operatorname{th} \kappa_{nm} R_m(k_{nm}r), \qquad (7)$$

откуда следует, что

$$a_{nm} = \frac{1}{N_{nm}^2 k_{nm} \operatorname{th} \kappa_{nm}} \int_{\varepsilon a}^{a} w_m(r) r R_m(k_{nm}r) \mathrm{dr} .$$
(8)

Здесь $r_{nm} = R_m (\mu_{nm} \varepsilon),$

$$N_{nm}^{2} = \frac{1}{2} \int_{\varepsilon a}^{a} r R_{m}^{2} (k_{nm}r) dr \begin{cases} 1, \ m \neq 0\\ 2, \ m = 0 \end{cases} = \frac{a^{2}}{2} \left[\left(1 - \frac{m}{\mu_{n}^{2}} \right) - \left(\varepsilon^{2} - \frac{m}{\mu_{n}^{2}} \right) r_{n}^{2} \right] \begin{cases} 1, \ m \neq 0\\ 2, \ m = 0 \end{cases}$$

Подставив (4)-(5) в (2), с учетом (1) и (7), будем иметь

$$\frac{d^2 w_m}{dr^2} + \frac{d w_m}{r dr} - \frac{m^2}{r^2} w_m = \frac{\rho}{T} \sum_{n=1}^{\infty} \left(\omega_{nm}^2 - \sigma^2 \right) a_{nm} R_m \left(k_{nm} r \right), \tag{9}$$

где $\omega_{nm}^2 = g k_{nm} \operatorname{th} \kappa_{nm}$ - собственная частота колебаний свободной поверхности жидкости.

Общее решение уравнение (9) будем искать в виде общего решения однородного уравнения и частного решения неоднородного

$$w_m(r) = Ar^m + \frac{B}{r^m} + \frac{\rho}{T} \sum_{n=1}^{\infty} \frac{1}{k_n^2} \left(\sigma^2 - \omega_{nm}^2\right) a_{nm} R_m(k_{nm}r).$$
(10)

Подставим (10) в (8) и выразим константу a_{nm} через неизвестные константы A и B

$$a_{nm} = -\frac{A\alpha_{nm} + B\beta_{nm}}{\frac{\rho}{Tk_{nm}^2} \left(\sigma^2 - \omega_{nm}^2\right) - k_{nm} \operatorname{th} \kappa_{nm}}.$$
(11)

Здесь

$$\alpha_{nm} = \frac{1}{N_{nm}^2} \int_{\varepsilon a}^{a} r^{m+1} R_m(k_{nm}r) dr = \frac{a^{m+2}}{\mu_{nm}} \cdot \frac{Z_{m+1}(\mu_{nm}) - \varepsilon^{m+1} Z_{m+1}(\varepsilon \mu_{nm})}{Z_m(\mu_{nm}) N_{nm}^2};$$

$$\beta_{nm} = \frac{1}{N_{nm}^2} \int_{\varepsilon a}^{a} r^{-m+1} R_m(k_{nm}r) dr = -\frac{a^{-m+2}}{\mu_{nm}} \cdot \frac{Z_{m-1}(\mu_{nm}) + \varepsilon^{-m+1} Z_{m+1}(\varepsilon \mu_{nm})}{Z_m(\mu_{nm}) N_{nm}^2}.$$

С учетом (11) *т*-узловая форма прогиба мембраны (10) примет вид

$$w_m(r) = A\left(r^m - \sum_{n=1}^{\infty} f_{nm}\left(\sigma^2\right)\alpha_{nm}R_m(k_{nm}r)\right) + B\left(\frac{1}{r^m} - \sum_{n=1}^{\infty} f_{nm}\left(\sigma^2\right)\beta_{nm}R_m(k_{nm}r)\right).$$
(12)

Здесь

$$f_{nm}(\sigma^2) = \frac{\sigma^2 - \omega_{nm}^2}{\sigma^2 - \omega_{nm}^2 - \frac{Tk_{nm}^3}{\rho} \operatorname{th} \kappa_{nm}}$$
(13)

Воспользовавшись условием жесткого закрепления мембраны (3), получим однородную систему для определения неизвестных констант A и B

$$\begin{cases} A\left(a^{m}-\sum_{n=1}^{\infty}\alpha_{nm}f_{nm}\right)+B\left(\frac{1}{a^{m}}-\sum_{n=1}^{\infty}\beta_{nm}f_{nm}\right)=0\\ A\left(b^{m}-\sum_{n=1}^{\infty}\alpha_{nm}f_{nm}r_{nm}\right)+B\left(\frac{1}{b^{m}}-\sum_{n=1}^{\infty}\beta_{nm}f_{nm}r_{nm}\right)=0 \end{cases}$$
(14)

Из равенства нулю определителя системы (11) следует частное уравнение совместных колебаний упругой мембраны и жидкости

$$\left(a^{m}-\sum_{n=1}^{\infty}a_{nm}f_{nm}\right)\left(\frac{1}{b^{m}}-\sum_{n=1}^{\infty}\beta_{nm}f_{nm}r_{nm}\right)-\left(\frac{1}{a^{m}}-\sum_{n=1}^{\infty}\beta_{nm}f_{nm}\right)\left(b^{m}-\sum_{n=1}^{\infty}\alpha_{nm}f_{nm}r_{nm}\right)=0$$
(15)

Перепишем частотное уравнение (15) в безразмерных переменных

$$\left(1-\sum_{n=1}^{\infty}\tilde{\alpha}_{nm}f_{nm}\right)\left(\frac{1}{\varepsilon^m}-\sum_{n=1}^{\infty}\tilde{\beta}_{nm}f_{nm}r_{nm}\right)-\left(1-\sum_{n=1}^{\infty}\tilde{\beta}_{nm}f_{nm}\right)\left(\varepsilon^m-\sum_{n=1}^{\infty}\tilde{\alpha}_{nm}f_{nm}r_{nm}\right)=0.$$
 (16)

Здесь
$$f_{nm}(\Omega^2) = \frac{\Omega^2 - n_x \mu_{nm}^*}{\Omega^2 - (n_x + \beta \mu_{nm}^2) \mu_{nm}^*}, \quad \Omega^2 = \frac{\sigma^2 a}{g_0}, \quad \beta = \frac{T}{\rho g_0 a^2}, \quad H = \frac{h}{a}, \quad g = g_0 n_x,$$

 $\mu_{nm}^* = \mu_{nm} \operatorname{th} \kappa_{nm}, \quad \kappa_{nm} = \mu_{nm} H, \quad \tilde{\alpha}_{nm} = \frac{\alpha_{nm}}{a}, \quad \tilde{\beta}_{nm} = \beta_{nm} a.$ Если разложить r^m и $\frac{1}{r^m}$ в ряд по

собственным функциям $R_m(k_{nm}r)$ $r^m = \sum_{n=1}^{\infty} \alpha_{nm} R_m(k_{nm}r)$, $\frac{1}{r^m} = \sum_{n=1}^{\infty} \beta_{nm} R_m(k_{nm}r)$, то частотное уравнение (16) можно переписать как

$$\sum_{n=1}^{\infty} \tilde{\alpha}_{nm} \tilde{f}_{nm} \sum_{n=1}^{\infty} \tilde{\beta}_{nm} \tilde{f}_{nm} r_{nm} - \sum_{n=1}^{\infty} \tilde{\beta}_{nm} \tilde{f}_{nm} \sum_{n=1}^{\infty} \tilde{\alpha}_{nm} \tilde{f}_{nm} r_{nm} = 0, \qquad (17)$$

где
$$\tilde{f}_{nm}(\Omega^2) = \frac{\mu_{nm}^3 \tanh \kappa_{nm}}{\Omega^2 - (n_x + \beta \mu_{nm}^2) \mu_{nm}^*}, r_{nm} = R_m(\mu_{nm}\varepsilon), \tilde{\alpha}_{nm} = \frac{2\mu_{nm}r_{n,m+1}(1) - \varepsilon^{m+1}r_{n,m+1}(\varepsilon)}{\tilde{N}_{nm}^2},$$

 $\tilde{\beta}_{nm} = \frac{-2\mu_{nm}r_{n,m-1}(1) - \varepsilon^{-m+1}r_{n,m-1}(\varepsilon)}{\tilde{N}_{nm}^2}, r_{n,m-1}(x) = \frac{Z_{m-1}(\mu_{nm}x)}{Z_m(\mu_{nm})},$
 $r_{n,m+1}(x) = \frac{Z_{m+1}(\mu_{nm}x)}{Z_m(\mu_{nm})}, \tilde{N}_{nm}^2 = \frac{1}{2} \Big[(\mu_{nm}^2 - m) - (\mu_{nm}^2\varepsilon^2 - m) r_{nm}^2 \Big] \Big\{ \begin{array}{l} 2, \ m \neq 0 \\ 1, \ m = 0 \end{array} \right.$

Так как коэффициенты α_{nm} и β_{nm} при m = 0 обращаются в нуль, то совместные осесимметричные колебания мембраны и идеальной несжимаемой в данной постановке становятся невозможными.

Для одноузловой формы (m=1) уравнения (16) и (17) совпадают с уравнениями работы [7].

При $\mathcal{E} = 0$ уравнения (16) и (17) примут соответственно вид

$$1 - \sum_{n=1}^{\infty} \tilde{\alpha}_{nm} f_{nm} = 0, \qquad (18)$$

$$\sum_{n=1}^{\infty} \tilde{\alpha}_{nm} \tilde{f}_{nm} = 0, \qquad (19)$$

где
$$\tilde{\alpha}_{nm} = \frac{2\mu_{nm}J_{m+1}(\mu_{nm})}{(\mu_{nm}^2 - m^2)J_m(\mu_{nm})} = \frac{2m}{\mu_{nm}^2 - m^2}.$$

Уравнение (18) для одноузловой формы (m = 1) совпадает с аналогичным уравнением работы [1]. По аналогии с работой [1] получим из статического подхода значения критических величин натяжения β и перегрузки $|n_x|$. Для этого в статической постановке рассмотрим уравнения (1)-(3). С учетом соотношений (2)-(4) будем иметь

$$\begin{cases} AJ_m(x) + BY_m(x) = 0\\ AJ_m(\varepsilon x) + BY_m(\varepsilon x) = 0 \end{cases}$$
(20)

Здесь $x = \sqrt{\frac{|n_x|}{\beta}}$.

Из равенства нулю определителя системы (20) следует уравнение для определения критического значения величины x

$$J_m(x)Y_m(\varepsilon x) - Y_m(x)J_m(\varepsilon x) = 0.$$
⁽²¹⁾

Ю.Н. Кононов, А.И. Федорчук

Из-за несжимаемости жидкости потеря устойчивости для осесимметричного случая (m=0)

невозможна, потому как $\int_{0}^{2\pi} d\theta \int_{a}^{a\varepsilon} rw(\mathbf{r},\theta) d\mathbf{r} \neq 0$. Перескок с плоской формы равновесия $(w \equiv 0)$ на

близлежащую форму может произойти только при $m \in \mathbb{N}$. Обозначая через $x_{1m}(\varepsilon)$ первый положительный корень уравнения (21), запишем условие устойчивости плоской формы равновесия мембраны при отрицательной перегрузке $(n_x < 0)$

$$\beta > \frac{|n_x|}{x_{1m}^2(\varepsilon)} \Leftrightarrow |n_x| < x_{1m}^2(\varepsilon)\beta.$$
⁽²²⁾

В таблице 1 приведены значения первых положительных корней уравнения (21) для m = 1, 2 в зависимости от ε . Из этой таблицы следует, что наименьшие значения $x_{1m}(\varepsilon)$ будут достигаться при m = 1 и условие устойчивости (22) примет вид

$$\beta > |n_x| / x_{11}^2(\varepsilon) \Leftrightarrow |n_x| < x_{11}^2(\varepsilon)\beta.$$
⁽²³⁾

Следует отметить, что условие устойчивости (23) не зависит от глубины заполнения жидкости.

	0.0	0.01	0.1	0.0	0.4
ε	0.0	0.01	0.1	0.2	0.4
<i>x</i> ₁₁	3.8317	3.8329	3.9402	4.2357	5.3912
<i>x</i> ₁₂	5.1356	5.1356	5.1423	5.2218	5.9659
Е	0.6	0.8	0.9	0.99	
<i>x</i> ₁₁	7.9301	15.738	31.492	314.16	
<i>x</i> ₁₂	8.2272	15.8553	31.4821	314.17	

Табл. 1. Первые положительные корни уравнения (21) для m = 1, 2

Табл. 2. Значения $\left(\left| n_{\chi} \right| / \beta \right)_{\kappa p}$ в зависимости от arepsilon

ε	0.0	0.01	0.1	0.2	0.4
x_{11}^2	14.682	14.691	15.531	17.942	29.065

Е	0.6	0.8	0.9	0.99
x_{11}^2	62.886	247.67	987.79	98697

Проведенные численные исследования критических значений перегрузки и натяжения из уравнений (16)-(19), показали, что они совпадают с аналогичными значениями, рассчитанными из уравнения (21). Таким образом, для расчета критических значений перегрузки и натяжения удобно пользоваться статическим подходом и приведенной таблицей 2.

Численные исследования при $\varepsilon \to 0$ показали, что закрепление центра круговой мембраны не влияет на частотный спектр. Отмечается хорошая сходимость рядов уравнений (16) и (18) и чуть хуже (17) и (19). С достаточной для практики точность в этих рядах можно удерживать не более пяти членов ряда.

На рис.1 при отсутствии гравитации $(n_x = 0)$ с учетом пяти членов в рядах частотного уравнения (16) для различных глубин заполнения H = 0.1, 0.5, 1.0, 1.5 приведены графики зависимости квадрата первой безразмерной частоты Ω_{11}^2/β (рис.1а) и второй Ω_{12}^2/β (рис.1б) от величины ε для m = 1.

Рис.1 Зависимость квадратов первой частоты Ω_{11}^2/β (рис.1а) и второй Ω_{12}^2/β (рис.1б) от $\mathcal E$

На рис.1 нижний график соответствует H = 0.1, а верхний – H = 1.5. Таким образом, при H > 1.0 влиянием глубины заполнения жидкости на частотный спектр можно пренебречь. Из рис.16 видно, что на вторую частоту глубины заполнения практически не влияет.

Из приведенных рис.1 следует, что с увеличение ε частоты возрастают. Наиболее слабое возрастание частот наблюдается на интервале $0 \le \varepsilon < 0.4$, а наиболее сильное – на $0.5 < \varepsilon < 1.0$ и чем ближе к значению 1.0, тем сильнее. С увеличением глубины заполнения или натяжения мембраны частоты возрастают.

На рис.2-3 приведены графики зависимости квадрата первой безразмерной частоты Ω_{11}^2 от перегрузки n_x ($-2 < n_x < 8$) для $\beta = 0.1, 0.5, H = 2.0, \varepsilon = 0.0, 0.2$ (рис.2) и $\varepsilon = 0.0, 0.4$ (рис.3). При заданном ε и различны β прямые на этих рисунках параллельны.

Рис.2 Зависимость Ω_{11}^2 от n_χ для $arepsilon=0.0,\,0.2$

Рис.3 Зависимость Ω_{11}^2 от n_{χ} для $\varepsilon = 0.0, 0.4$

Из графиков на рис.2-3 видна линейная зависимость квадрата первой безразмерной частоты Ω_{11}^2 от перегрузки n_x для различных величин ε и натяжений мембраны β . С уменьшением перегрузки частота уменьшается и при отрицательных перегрузках может обратиться в ноль, что влечет за собой потерю устойчивости колебаний мембраны. Точки пересечений линий кривых Ω_{11}^2 с осью абсцисс дают критические значения перегрузки и натяжения, которые совпадают с их значениями, полученными из статической постановки.

На основании проведенных исследований сделаны следующие выводы:

- Показано отсутствие совместных осесимметричных колебаний кольцевой (круговой) мембраны и жидкости в невесомости.
- 2) Закрепление центра круговой мембраны не влияет на частотный спектр.
- При отрицательной перегрузке может произойти потеря устойчивости плоского равновесного положения мембраны.
- Найдены критические значения величин перегрузки и натяжения мембраны при которых происходит потеря устойчивости.
- 5) Зависимость квадрата частоты от перегрузки линейная.

6) В большинстве случаев при H > 1.0 влиянием глубины заполнения жидкости на частотный спектр можно пренебречь.

СПИСОК ЛИТЕРАТУРЫ

- Самодаев В.Е. Влияние перегрузки на частоты собственных колебаний жидкости в жестком цилиндрическом баке с мембраной на свободной поверхности / В.Е. Самодаев // Тр. семинара "Динамика упругих и твердых тел, взаимодействующих с жидкостью". – Томск, 1972. – С. 180–186.
- Кононов Ю.Н. Свободные колебания стратифицированной жидкости с упругой мембраной на свободной и внутренней поверхностях жидкости / Ю.Н. Кононов, В.П. Шевченко // Тр. Межд. конф. "Современные проблемы концентрации напряжений". – Донецк, 1998. – С. 125-131.
- 3. Кононов Ю.Н. Свободные колебания многослойной стратифицированной жидкости, разделенной упругими мембранами / Ю.Н. Кононов, В.П. Шевченко // Теор. и прикладная механика. 1999. Т.29. С. 151-163.
- Кононов Ю.Н., Шевченко В.П. Свободные колебания двухслойной жидкости с упругими инерционными мембранами на свободной и внутренней поверхностях / Ю.Н. Кононов, В.П. Шевченко // Теор. и прикладная механика. – 2001. – Т. 32. – С. 158-163.
- 5. Троценко В. А. Свободные колебания жидкости в прямоугольном канале с упругой мембраной на свободной поверхности / В.А. Троценко // Прикладная механика. 1995. Т. 31, № 8. С. 74-81.
- 6. Моисеев Н.Н. Численные методы расчета собственных частот колебаний ограниченного объема жидкости / Н.Н. Моисеев, А.А. Петров – М.: Изд-во ВЦ АН СССР, 1966. – 270с.
- 7. Шевченко В. П. Влияние перегрузки на свободные колебания кольцевой мембраны, расположенной на свободной поверхности жидкости / В.П. Шевченко, А.Ю. Карнаух // Вісн. Донецького ун-ту. Сер. А. 2006. №. 1, Ч. 1. С. 162-165.
- Гончаров Д.А. Осесимметричные колебания двухплотностной жидкости в цилиндрическом баке [Электронный ресурс] / Д.А. Гончаров // Наука и образование электронное научно-техническое издание. – Электронные данные. – [Москва, МГТУ им. Н.Э. Баумана, 2012]. – № 4. – Режим доступа: http://technomag.bmstu.ru/doc/362856.html (дата обращения: 19.02.2014).
- 9. Гончаров Д.А. Динамика двухслойной жидкости, разделенной упругой перегородкой с учетом сил поверхностного натяжения [Электронный ресурс] / Д.А. Гончаров // Наука и образование электронное научно-техническое издание. Электронные данные. [Москва, МГТУ им. Н.Э. Баумана, 2013]. № 11. Режим доступа: http://technomag.bmstu.ru/doc/619258.html (дата обращения: 19.02.2014).
- Пожалостин А.А. Свободные осесимметричные колебания двухслойной жидкости с упругим разделителем между слоями при наличии сил поверхностного натяжения [Электронный ресурс] / А.А. Пожалостин, Д.А. Гончаров // Наука и инновации: инженерный журнал. – Электронные данные. – [Москва, МГТУ им. Н.Э. Баумана, 2013] – № 12. – Режим доступа: http://engjournal.ru/catalog/eng/teormach/1147.html (дата обращения: 19.02.2014).

ВПЛИВ ПЕРЕВАНТАЖЕННЯ НА ВІЛЬНІ КОЛИВАННЯ КІЛЬЦЕВОЇ НЕВАГОМОЇ МЕМБРАНИ, РОЗТАШОВАНІЙ НА ВІЛЬНІЙ ПОВЕРХНІ РІДИНИ

Ю.М. Кононов, О.І. Федорчук

РЕЗЮМЕ

Оцінено вплив перевантаження на стійкість коливань кільцевої мембрани та на першу і другу власні частоти в залежності від геометрії порожнини, натягу мембрани і глибини заповнення рідини. Показано, що критичні значення натягу кільцевої мембрани і перевантаження можуть бути визначені зі статичної задачі.

Ключові слова: гідропружність, прямоугольна мембрана, вільні колебания, ідеальна рідина

THE INFLUENCE OF OVERLOADING ON FREE VIBRATIONS OF THE RING WEIGHTLESS MEMBRANE LOCATED ON THE FREE SURFACE OF A LIQUID

Yu.M. Kononov, O.I. Fedorchuk

SUMMARY

Influence of an overload on stability oscillation of the ring membrane and the first and second own frequency is appreciated depending on geometry of a cavity, a tension of a membrane and depth of filling of a liquid. It is shown, that critical values of size of a tension of a ring membrane and an overload can be determined from a static problem. *Keywords:* hydroelasticity, rectangular membrane, free oscillations, ideal fluid.

Ю.Н. Кононов, А.И. Федорчук