Fedir Sokhatsky

Doctor in Physics and Mathematics, Professor of the Department of Mathematical Analysis and Differential Equations, Vasyl' Stus Donetsk National University;

ABOUT ORTHOGONALITY OF MULTIARY OPERATIONS

In this article orthogonality of multiary operations and hypercubes are under consideration. In particular, criteria of orthogonality of n-ary operations are systematized and a criterion for a operation in a set of orthogonal operations to be invertible is found. Corollaries for ternary case are given.

Key words: n-ary quasigroup, Latin hypercubs, orthogonal quasigroups, orthogonal n ary operations

Introduction

Orthogonality of multiary operations and quasigroups, hypercubes and Latin hypercubes (i.e., permutation cubes) are well-known and applicable in various areas including orthogonal and projective geometries, cryptology, functional equations. In this article, we continue their investigation (see [1]-[9]).

1. Preliminaries

Let Q be an arbitrary set - finite or infinite. An n-ary operation f defined on the carrier Q is a mapping $f: Q^{n} \rightarrow Q$. An n-ary operation f is called invertible if there are inverses ${ }^{[i]} f$ of f for every $i=1, \ldots, n$:

$$
\begin{equation*}
{ }^{[i]} f\left(x_{1}, \ldots, x_{n}\right)=x_{n+1}: \Leftrightarrow f\left(x_{1}, \ldots, x_{i-1}, x_{n+1}, x_{i+1}, \ldots, x_{n}\right)=x_{i} \tag{1}
\end{equation*}
$$

$i=0, \ldots, n-1$. This is a partial case of a parastrophe ${ }^{\sigma} f$ of an invertible operation f :

$$
\begin{equation*}
{ }^{\sigma} f\left(x_{1}, \ldots, x_{n}\right)=x_{n+1}: \Leftrightarrow f\left(x_{1 \sigma}, \ldots, x_{(n) \sigma}\right)=x_{(n+1) \sigma}, \tag{2}
\end{equation*}
$$

for all $\sigma \in S_{n+1}$ permutation of the set $\{0, \ldots, n\}$. The algebra $\left(Q ; f,{ }^{[1]} f, \ldots,{ }^{[n]} f\right)$ is called a quasigroup.

2. Equivalent definitions of orthogonality

A mapping α from a set A to a set B is called complete, if all preimages have the same cardinality.

A k-tuple of n-ary operations defined on a finite set $Q(m:=|Q|)$ is called orthogonal, if for all a_{1}, \ldots, a_{k} in Q the system

$$
\left\{\begin{array}{l}
f_{1}\left(x_{1}, \ldots, x_{n}\right)=a_{1} \tag{3}\\
\ldots \ldots \ldots \ldots \ldots \ldots \\
f_{k}\left(x_{1}, \ldots, x_{n}\right)=a_{k}
\end{array}\right.
$$

has exactly m^{n-k} solutions.
A k-tuple $\left(f_{1}, \ldots, f_{k}\right)$ of operations is called embeddable into an m-tuple $\left(g_{1}, \ldots, g_{m}\right)$ of operations, if each of the operations f_{1}, \ldots, f_{k} is an entry in $\left(g_{1}, \ldots, g_{m}\right)$, i.e., $g_{i_{1}}=f_{1}, \ldots$, $g_{i_{k}}=f_{k}$, for some $i_{1}, \ldots i_{k} \in\{1, \ldots, m\}$.

Let Q be a set. A mapping f from Q^{n} in Q^{k} is called a multioperation of the arity n and the rank k or (n, k)-multioperation. Every (n, k)-multiopertion f uniquely defines and is uniquely defined by a k-tuple $\left(f_{1}, \ldots, f_{k}\right)$ of n-ary operation:

$$
f\left(x_{1}, \ldots, x_{n}\right)=\left(f_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{k}\left(x_{1}, \ldots, x_{n}\right)\right)
$$

For briefly, $f=\left(f_{1}, \ldots, f_{k}\right)$. The tuple is called coordinates of the multioperation. Therefore,

$$
f\left(x_{1}, \ldots, x_{n}\right)=\left(f_{1}, \ldots, f_{k}\right)\left(x_{1}, \ldots, x_{n}\right)=\left(f_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{k}\left(x_{1}, \ldots, x_{n}\right)\right)
$$

In other words, the set $\Omega_{n, k}$ of (n, k)-multioperations is a k-th power of the set of n-ary operations:

$$
\Omega_{n, k}=\Omega_{n}^{k}:=\underbrace{\Omega_{n} \times \Omega_{n} \times \ldots \times \Omega_{n}}_{k} .
$$

Some multioperations are complete. For example, the multioperation

$$
\iota_{1, \ldots, k}:=\left(\iota_{1}, \ldots, \iota_{k}\right), \quad \iota_{1, \ldots, k}\left(x_{1}, \ldots, x_{n}\right):=\left(x_{1}, \ldots, x_{k}\right)
$$

is complete because preimage of each tuple $\left(a_{1}, \ldots, a_{k}\right)$ is

$$
\iota_{1, \ldots, k}^{-1}\left(a_{1}, \ldots, a_{k}\right)=\left\{\left(a_{1}, \ldots, a_{k}, x_{k+1}, \ldots, x_{n}\right) \mid x_{k+1}, \ldots, x_{n} \in Q\right\}
$$

and it has m^{n-k} elements.
Theorem 1. Let $f=\left(f_{1}, \ldots, f_{k}\right)$ be an (n, k)-multioperation defined on a finite set Q ($m:=|Q|$) and let $k<n$, then the following assertions are equivalent:

1. the multioperation f is complete;
2. each preimage under f has m^{n-k} elements;
3. the tuple $\left(f_{1}, \ldots, f_{k}\right)$ of n-ary operations are orthogonal;
4. there exists a bijection $\theta: Q^{n} \rightarrow Q^{n}$ such that $f=\iota_{1, \ldots, k} \theta$;
5. the tuple $\left(f_{1}, \ldots, f_{k}\right)$ of n-ary operations is embeddable into an orthogonal n-tuple of n-ary operations.

Proof. $(1) \Rightarrow(2)$. Since f is a mapping from Q^{n} to Q^{k}, then the sets Q^{n} / f and Q^{k} have the same cardinal, therefore Q^{n} / f has m^{k} elements. Completeness of f means that all members in the set Q^{n} / f have the same cardinal. Thus for arbitrary a_{1}, \ldots, a_{k}, we have

$$
\left|f^{-1}\left(a_{1}, \ldots, a_{k}\right)\right|=\frac{\left|Q^{n}\right|}{\left|Q^{n} / f\right|}=\frac{m^{n}}{m^{k}}=m^{n-k}
$$

$(2) \Rightarrow(3)$. The implication is true because for arbitrary a_{1}, \ldots, a_{k} the set of all solutions of the system (3) is equal to preimage of the tuple $\left(a_{1}, \ldots, a_{k}\right)$ under f.
$(3) \Rightarrow(1)$. Orthogonality of the operations f_{1}, \ldots, f_{k} means that the preimage of every k-tuple $\left(a_{1}, \ldots, a_{k}\right)$ has m^{n-k} elements, so, f is complete.
$(1) \Rightarrow(4)$. The multioperation $\iota_{1, \ldots, k}$ is complete according to the definition and the multioperation f is complete according to the assumption. The item (2) implies that all preimages under both f and $\iota_{1, \ldots, k}$ consists of m^{n-k} elements. Consequently, for every k-tuple $\left(a_{1}, \ldots, a_{k}\right) \in Q^{k}$ there exists a bijection

$$
\alpha_{a_{1}, \ldots, a_{k}}: \iota_{1, \ldots, k}^{-1}\left(a_{1}, \ldots, a_{k}\right) \rightarrow f^{-1}\left(a_{1}, \ldots, a_{k}\right) .
$$

Because all domains of the mappings form a partition of Q^{n} and the all codomains do, their union

$$
\alpha:=\bigcup_{a_{1}, \ldots, a_{k} \in Q} \alpha_{a_{1}, \ldots, a_{k}}
$$

is a bijection of Q^{n}. Moreover, for each $\left(x_{1}, \ldots, x_{n}\right) \in Q^{n}$

$$
(f \alpha)\left(x_{1}, \ldots, x_{n}\right)=f\left(\alpha\left(x_{1}, \ldots, x_{n}\right)\right)=f\left(\alpha_{x_{1}, \ldots, x_{k}}\left(x_{1}, \ldots, x_{n}\right)\right)=\left(x_{1}, \ldots, x_{k}\right)
$$

As $\alpha_{x_{1}, \ldots, x_{k}}\left(x_{1}, \ldots, x_{n}\right) \in f^{-1}\left(x_{1}, \ldots, x_{k}\right)$,

$$
(f \alpha)\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{k}\right)=\iota_{1, \ldots, k}\left(x_{1}, \ldots, x_{n}\right)
$$

Hence, $f \alpha=\iota_{1, \ldots, k}$. Therefrom $f=\iota_{1, \ldots, k} \alpha^{-1}$.
$(4) \Rightarrow(5)$. Since the bijection θ is a mapping from Q^{n} to Q^{n}, then there is a n-tuple $\left(g_{1}, \ldots, g_{n}\right)$ of n-ary operations defined on Q such that $\theta=\left(g_{1}, \ldots, g_{n}\right)$. Thence,

$$
\left(f_{1}, \ldots, f_{k}\right)=f=\iota_{1, \ldots, k} \theta=\iota_{1, \ldots, k}\left(g_{1}, \ldots, g_{n}\right)=\left(g_{1}, \ldots, g_{k}\right),
$$

so, the k-tuple $\left(f_{1}, \ldots, f_{k}\right)$ is embeddable into the n-tuple $\left(g_{1}, \ldots, g_{n}\right)$. Since θ is a bijection, the preimage of every n-tuple $\left(a_{1}, \ldots, a_{n}\right)$ is a singleton and so the system (3) has a unique solution, i.e. the operations g_{1}, \ldots, g_{n} are orthogonal. Thus, the k-tuple $\left(f_{1}, \ldots, f_{k}\right)$ of operations is embeddable into an orthogonal n-tuple of operations.
$(5) \Rightarrow(3)$. Let a k-tuple $\left(f_{1}, \ldots, f_{k}\right)$ of n-ary operations is embeddable into an orthogonal n-tuple $\left(f_{1}, \ldots, f_{n}\right)$ of orthogonal n-ary operations. It means that for every n-tuple $\left(a_{1}, \ldots, a_{n}\right)$ of elements of the set Q the system

$$
\left\{\begin{array}{l}
f_{1}\left(x_{1}, \ldots, x_{n}\right)=a_{1} \tag{4}\\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
f_{k}\left(x_{1}, \ldots, x_{n}\right)=a_{k} \\
f_{k+1}\left(x_{1}, \ldots, x_{n}\right)=a_{k+1} \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
f_{n}\left(x_{1}, \ldots, x_{n}\right)=a_{n}
\end{array}\right.
$$

has a unique solution. Let $\left(a_{1}, \ldots, a_{k}\right)$ be an arbitrary fixed k-tuple of elements in Q and X be the set of all solutions of the system (3). Let define a mapping

$$
\lambda: \quad Q^{n-k} \rightarrow X
$$

as follows: $\lambda\left(a_{k+1}, \ldots, a_{n}\right)=\left(x_{1}, \ldots, x_{n}\right)$ means that $\left(x_{1}, \ldots, x_{n}\right)$ is a solution of the system (4). Since λ is a bijection and Q^{n-k} has m^{n-k} elements, the set X also has m^{n-k} elements. Inasmuch as a_{1}, \ldots, a_{k} are arbitrary elements, the k-tuple $\left(f_{1}, \ldots, f_{k}\right)$ of n-ary operations is orthogonal.

Let $k>n$, then the set of n-ary operations $\mathbf{f}:=\left\{f_{1}, \ldots, f_{k}\right\}$ is called orthogonal if each n operations from the set is orthogonal.

3. About orthogonality of hypercubes

A table of the dimension m^{n} is a set containing m^{n} cells. The number n is called an arity and the number m is an order of the table. Let Q be an m-element set. Since Q^{n} has m^{n} elements, we can bijectively label all cells of the table by elements of Q^{n}. If a cell is labelled by $\bar{a}:=\left(a_{1}, \ldots, a_{n}\right)$ then the tuple \bar{a} is called coordinates of the cell. In this case, we will say that the table is defined over the set Q. The following set of cells

$$
L_{i, \bar{a}}:=\left\{\left(a_{1}, \ldots, a_{i-1}, x, a_{i+1}, \ldots, a_{n}\right) \mid x \in \overline{0, m-1}\right\}
$$

is called an i-th line defined by \bar{a} and the number i is a direction of the line.
A hypercube or cube of dimension m^{n} over a set $Q(|Q|=m)$ is a table of the dimension m^{n} whose each cell contains an element from Q called an entry.

A table of results (i.e., Cayley table) of an n-ary operation f defined on Q is a cube of the dimension m^{n} with entries from the set Q. The cube is called Latin if all entries in each line are pairwise different. Cayley table of a function is Latin if and only if the function is invertible.

Let C_{1}, \ldots, C_{n} be n-ary cubs defined over the same set Q. Let us superimpose all of them. As a result, we obtain a cube $C_{1, \ldots, n}$ such that each its cell contains one n-tuple of elements from Q. If all the tuples are pairwise different, the cubs C_{1}, \ldots, C_{n} are called orthogonal. It is easy to verify that cubes are orthogonal iff the corresponding functions are orthogonal.

The following question is natural: When one of orthogonal cubes is Latin?
The set of all cells taken exactly one from each line of an n-ary table is called its ($n-1$)-ary diagonal.

Lemma 1. A set d of cells of an n-ary table is its diagonal if and only if there exist an ($n-1$)-ary invertible operation g such that

$$
\begin{equation*}
d=\left\{\left(x_{1}, \ldots, x_{n-1}, g\left(x_{1}, \ldots, x_{n-1}\right)\right) \mid x_{1}, \ldots, x_{n-1} \in Q\right\} . \tag{5}
\end{equation*}
$$

Proof. Let d be a set of cells and let $\bar{x}:=\left(x_{1}, \ldots, x_{n}\right)$, where x_{1}, \ldots, x_{n} are variables. d is an $(n-1)$-ary diagonal means that d has exactly one cell in each of the following lines

$$
L_{1, \bar{x}}, \quad L_{2, \bar{x}}, \ldots, \quad L_{n, \bar{x}}
$$

It is equivalent to "in the belonging

$$
\left(x_{1}, \ldots, x_{n}\right) \in d
$$

arbitrary values of arbitrary $n-1$ variables uniquely define the value of n-th variable". It the same that "the relationship

$$
g\left(x_{1}, \ldots, x_{n-1}\right)=x_{n}: \Leftrightarrow\left(x_{1}, \ldots, x_{n}\right) \in d
$$

defines an invertible ($n-1$)-ary operation g on Q ". This relationship can be rewritten as (5).
Let d be an ($n-1$)-ary diagonal of the table of the dimension m^{n} and let i be an arbitrary direction. Each i-line has $n-1$ parameters which takes their values in Q. Therefore, there are m^{n-1} different i-lines. d has exactly one cell in each line and so d has m^{n-1} different cells. Thus, d is a sub-table of the dimension m^{n-1}.

A diagonal partition of a table is its partition whose blocks are diagonals of the table. A natural partition of a cube is its partition whose blocks are sets of cells containing the same element. It is easy to see the validity of the following proposition.

Proposition 1. A natural partition of a cube is diagonal iff the cube is Latin.
An ($n-1$)-ary diagonal d of n-ary cubes C_{1}, \ldots, C_{n-1} is said to be their transversal, if sub-cubes of these cubes defined by d are orthogonal. A transversal partition of $n-1 n$-ary cubes of the same order is their diagonal partition, if each block is a transversal of the cubes.

Theorem 2. n-ary cubes C_{1}, \ldots, C_{n-1} of the same dimension have a Latin compliment iff they have a transversal partition.

Proof. Let C_{1}, \ldots, C_{n} be orthogonal cubes of the dimension m^{n} and let C_{n} be Latin. All tuples in cells of the cube $C_{1, \ldots, n}$ obtained by superimposition of the given cubes are different. Since C_{n} is Latin, then its natural partition is diagonal, i.e., all its blocks are diagonals of the m^{n}-dimension table. Since the partition is natural in the cube C_{n}, then an arbitrary block B_{a} in the cube $C_{1, \ldots, n}$ consists of cells which contains n-tuples $\left(x_{1}, \ldots, x_{n-1}, a\right)$ for some fixed element a. Because the cubes C_{1}, \ldots, C_{n} are orthogonal, all tuples in cells of the cube $C_{1, \ldots, n}$ are pairwise different. Therefore, all tuples in B_{a} are also different. The n-th coordinate in all tuple from B_{a} are the same element a, so the sequences of other $n-1$ coordinates are pairwise different. Therefore, the ($n-1$)-ary sub-cubes (which are diagonals) of the cubes C_{1}, \ldots, C_{n-1} defined by the B_{a} are orthogonal.

Vise versa, let n-ary cubes C_{1}, \ldots, C_{n-1} of the dimension m^{n} have a transversal partition. It means that there is a partition of the table of dimension m^{n} such that each block B is a $(n-1)$-ary diagonal and so it is sub-table of the arity $n-1$ but the same order m. Therefore, the block B has m^{n-1} cells. In each cubes C_{1}, \ldots, C_{n-1} the block B defines a sub-cube: B_{1}, \ldots, B_{n-1}. According to assumption, the sub-cubes are orthogonal, i.e., the cube $B_{1, \ldots, n-1}$ has a $(n-1)$-tuple of elements from Q. All the tuples are pairwise different because the sub-cubes are orthogonal. Note, that there are m blocks of the partition, so, we can bijectively label all the blocks with the elements of the set Q. We define a cube C_{n} by the following way: we put an element a in a cell, if the cell belong to the block labeled by a. Since each block is a diagonal, then the same element appears in pairwise differen lines. That is why the constructed cube is Latin. Consider the cube $C_{1, \ldots, n}$. If two its cells belong to the different blocks, the they are different because they labeled by different elements from Q and so the tuple in the cells differ the n-th coordinates. If the celles belong to the same block, then they are different because the sequences of fist $n-1$ coordinates are different which follows from orthogonality of sub-cubes.

4. Ternary case

This subsection contains corollaries from the obtained results for the ternary case.
Corollary 1. Let $f=\left(f_{1}, f_{2}\right)$ be an (3,2)-multioperation defined on a finite set Q ($m:=|Q|$), then the following assertions are equivalent:

1. the multioperation f is complete;
2. each preimage under f has m elements;
3. the tuple $\left(f_{1}, f_{2}\right)$ of ternary operations is orthogonal;
4. there exists a bijection $\theta: Q^{3} \rightarrow Q^{3}$ such that $f=\iota_{1,2} \theta$;
5. the tuple $\left(f_{1}, f_{2}\right)$ of ternary operations is embeddable into an orthogonal triplet of ternary operations.

Corollary 2. Let $f=\left(f_{1}, f_{2}, f_{3}\right)$ be an (3,3)-multioperation defined on a finite set Q ($m:=|Q|$), then the following assertions are equivalent:

1. the multioperation f is a permutation of Q^{3};
2. each preimage under f has one element;
3. the tuple $\left(f_{1}, f_{2}, f_{3}\right)$ of ternary operations is orthogonal;
4. there exists a bijection $\theta: Q^{3} \rightarrow Q^{3}$ such that $f \theta=\iota_{1,2,3}$.

The set of all cells taken exactly one from each line of a ternary table will be called its binary diagonal or spacial square.

Lemma 2. A set d of cells of a ternary table is its diagonal if and only if there exists a binary invertible operation g such that $d=\{(x, y, g(x, y)) \mid x, y \in Q\}$.

Let d be a binary diagonal of the table of the dimension m^{3} and let i be an arbitrary direction. Each i-line has two parameters which take their values in Q. Therefore, there are m^{2} different i-lines. d has exactly one cell in each line and so d has m^{2} different cells. Thus, d is a sub-table of the dimension m^{2}.

A diagonal partition of a table is the partition whose blocks are diagonals of the table. A natural partition of a cube is its partition whose blocks are sets of cells containing the same element. It is easy to see the validity of the following proposition.

Proposition 2. A natural partition of a cube is diagonal iff the cube is Latin.
An binary diagonal d of ternary cubes C_{1}, C_{2} will be their transversal, if sub-cubes of these cubes defined by d are orthogonal. A transversal partition of two binary cubes of the same order is their diagonal partition, if each block is a transversal of the cubes.

Theorem 3. Ternary cubes C_{1}, C_{2} of the same dimension have a Latin compliment iff they have a transversal partition.

Conclusion

The obtained results permits to defined all diagonals of an n-ary table: diagonal of a diagonal also is a diagonal of the given n-ary table. Consequently, it is possible to establish their connection with orthogonality of multi-ary cubes.

References

[1] Belyavskaya G. Pairwise ortogonality of n-ary operations // Bul. Acad. Ştiinţe Repub. Mold. Mat. - 2005. - №3(49). - P. 5-18.
[2] Belyavskaya G., Mullen G.L. Orthogonal hypercubes and n-ary operations // Quasigroups Related Systems. - 2005. - Vol. 13, №1. - P. 73-86.
[3] Belyavskaya G. S-systems of n-ary quasigroups // Quasigroups Related Systems. - 2007. - Vol. 15, №2. - P. 251-260.
[4] Belyavskaya G. Power sets of n-ary quasigroups // Bul. Acad. Ştiinţe Repub. Mold. Mat. - 2007. - №1(53). - P. 37-45.
[5] Dougherty S.T., Szczepanski T.A. Latin k-hypercubes // Australas. J. Combin. - 2008. Vol. 40. - P. 145-160.
[6] Shcherbacov V. Elements of Quasigroup Theory and Applications. - Chapman and Hall/CRC, 2017. - xxi +576 p.
[7] Belousov V.D. Foundations of the theory of quasigroups and loops. Nauka (1967), 222 (Russian).
[8] Sokhatsky F.M. Parastrophic symmetry in quasigroup theory. Visnyk DonNU, A: natural Sciences. 2016. Vol.1-2. P. 70-83.
[9] Markovski S., Mileva A. On construction of orthogonal d-ary operations. Publication de l'institute mathematique, Nouvelle serie, tom 101(115) (2017), 109-119 https://doi.org/10.2298/PIM1715109M

Федір Сохацький

Доктор фізико-математичних наук, професор кафедри математичного аналізу та диферениіальних рівнянь
Донецький національний університет імені Василя Стуса

ПРО ОРТОГОНАЛЬНІСТЬ БАГАТОМІСНИХ ОПЕРАЦІЙ

PEЗЮME

В цій статті розглядається ортогональність багатоміних операцій та гіперкубів. Зокрема, систематизовано критерії ортогональності багатомісних операцій та знайдено умови за яких куб із ортогональної системи кубів $є$ латинським. Наведено наслідки для тернарного випадку.

Key words: n-арна квазігруnа, латинський гіперкуб, ортогональні квазігрупи, ортогональні n-арні операції.

Федор Сохацкий

Доктор физико-математических наук, професор кафедрь математического анализа и дифференииальных уравнений,
Донецкий национальный университет имени Василя Стуса

ОБ ОРТОГОНАЛЬНОСТИ МНОГОМЕСТНЫХ ОПЕРАЦИЙ

PEЗЮME

В этой статье изучется ортогональность многоместных операций. В частности, систематизированы критерии ортогональности многоместных операций и найдено условие при котором операция из системы ортогональных кубов якляется латинским. Приведено следствия для тернарного случая.

Ключевые слова: n-арная квазигруппа, латинский гиперкуб, ортогональные квазигруппи, ортогональные n-арные операции.

