УДК: 543.432:535.6:54.04

ЦВЕТОМЕТРИЧЕСКИЕ ФУНКЦИИ ПОЛНОГО ЦВЕТОВОГО РАЗЛИЧИЯ И ПОКАЗАТЕЛЯ ЖЕЛТИЗНЫ – КОЛИЧЕСТВЕННЫЕ ХАРАКТЕРИСТИКИ КИСЛОТНО-ОСНОВНЫХ СВОЙСТВ ПЕЛАРГОНИДИНА

А.Н. Чеботарёв, Д.В. Снигур, И.С. Ефимова Одесский национальный университет им. И.И. Мечникова, г. Одесса

На основании данных спектрофотометрических исследований водных растворов пеларгонидина в широком интервале кислотности (рН) рассчитаны цветометрические функции показателя желтизны и полного цветового различия. Показана принципиальная возможность их применения для изучения кислотно-основных равновесий и определения констант ионизации пеларгонидина в водных растворах.

Ключевые слова: полное цветовое различие, показатель желтизны, кислотно-основные свойства, константы ионизации, пеларгонидин.

Введение. Для детального изучения и практического использования пищевых красителей, биологически активных добавок и др. необходимо оперировать их основными физико-химическими характеристиками в растворах различной природы. Особенно важно определение показателей констант ионизации (рК) их функционально-аналитических групп, поскольку величина рК определяет протекание кислотно-основных реакций в данной среде, их направление и интенсивность, характер электростатических взаимодействий, а также влияет на все транспортные свойства вещества в живых организмах [1-3]. Определение рК - задача классических физико-химических методов, таких как спектрофотометрия (СФМ), кондуктометрия, потенциометрия и их модификаций [4-6]. Модернизация существующих подходов остается важной задачей, однако не менее актуальным является поиск новых способов изучения протолитических равновесий в растворах. На сегодняшний день перспективным является цветометрия направление о способах количественного описания цвета объектов различной природы, выделившиеся из цветоведения и колористики [7, 8]. Использование подходов цветометрии в химии объединяют как метод химической цветометрии (МХЦ), который заключается в расчете цветовых координат объектов на основе имеющихся спектральных характеристик химических систем, а также позволяет различать спектрально близкие вещества и получать новые данные о них [9-14]. Данный метод оперирует так называемыми цветометрическими функциями (ЦФ): насыщенностью, светлотой, показателем желтизны (Y_I), полными цветовыми различиями (ΔЕ) и др. [8]. Авторами [15] показана принципиальная возможность использования МХЦ для определения рК в растворах. Ранее нами [16] изучены особенности применения функций ΔΕ для количественного описания кислотно-основных равновесий в модельных водных растворах синтетических красителей.

Одним из наиболее распространенных классов красителей растительного происхождения являются антоцианидины (АЦН), которые используются как пищевые красители, компоненты биологически активных добавок и кислотно-основные индикаторы, что обусловлено их физико-химическими характеристиками и особенностями строения. Известно [17, 18], что АЦН в зависимости от кислотности среды могут находиться в нескольких кислотно-основных формах, существующих в узких интервалах рН, и характеризуются соответствующей константой ионизации. Среди существующих АЦН применение находят цианидин (3,5,7,3'4'- пентагидроксибензфлавилий хлорид) и пеларгонидин (3,5,7,4' – тетрагидроксибензфлавилий хлорид) как компоненты пищевого красителя Е163 [19] и биологически активных добавок [20, 21].

Цель данной работы состояла в изучении принципиальной возможности использования цветометрических функций – показателя желтизны и полного цветового различия для определения рК пеларгонидина (ПН) в водных растворах.

Экспериментальная часть. Рабочий раствор ПН готовили экстракционным выделением из растительного материала. Для этого 3,00 г измельченных сухих цветков пеларгонии (Pelargonium zonale (L.) L'Hér. Ex Ait.) заливали 100 мл водно-спиртового раствора (30:70 об.%) и оставляли на сутки, периодически встряхивая [22]. Полученные экстракты очищали согласно методике [23], количественно переносили в мерную колбу на 250 мл и доводили дистиллированной водой до метки. При изучении протолитических равно-

весий в растворах ПН регистрировали спектры поглощения на спектрофотометре СФ-56 (ОКБ «ЛОМО-СПЕКТР», С.-Петербург, РФ) в кварцевых кюветах с длиной оптического пути 1 см в диапазоне длин волн $380 \div 780$ нм. Для определения рК красителя в ряд мерных колб объемом 50 мл вносили по 3 мл

основного раствора ПН, в каждой создавали кислотность среды в диапазоне рН $1\div 14$ через единицу значений рН. При нечетком разделении максимумов и для большей дифференциации значений рК дискретность изменения кислотности уменьшали до 0,25 единицы рН. Известно [24], что содержание этанола до 10% заметно не влияет на величину рК, поэтому полученные величины констант ионизации ПН можно отнести к водным растворам. Использовали следующие ЦФ: L, A, B координаты цвета в равноконтрастной системе СІЕLAB (равные расстояния между точками, отвечающим разным цветам в этом пространстве, в любых его частях, позволяет ввести удобную меру для количественного описания цвета), где координата L описывает светлоту исследуемого раствора, а координаты A, B — положение цвета в цветовом пространстве в диапазоне от зеленого до пурпурного и от синего до желтого соответственно; X, Y, Z — координаты цвета в системе СІЕХҮZ; ΔE_{76} — полное цветовое различие в системе СІЕLAB, являющееся математической разностью координат двух цветов и Y_I — показатель желтизны, описывающий изменение цвета образца от белого до желтого. Координаты цвета получали методом избранных ординат с помощью базового программного обеспечения спектрофотометра, а ЦФ Y_I и ΔE_{76} рассчитывали по формулам (1) и (2) соответственно:

$$Y_I = 100(1,28X - 1,06Z)/Y,$$
 (1)

где X, Y, Z – координаты цвета в системе CIEXYZ.

$$\Delta E_{76} = \sqrt{\left(\Delta L\right)^2 + \left(\Delta A\right)^2 + \left(\Delta B\right)^2} \,, \tag{2}$$

где $\Delta L = L_1 - L_2$, $\Delta A = A_1 - A_2$, $\Delta B = B_1 - B_2$; L, A, B — координаты цвета в системе CIELAB.

Все расчеты проводили с помощью созданной нами программы «Цветометрический калькулятор». Необходимую кислотность создавали с помощью растворов серной кислоты и гидроксида натрия, рН контролировали с помощью иономера И-130М (ПО «Измеритель», Гомель, Республика Беларусь), откалиброванного по стандартным буферным растворам, в комплекте со стеклянным индикаторным электродом ЭСЛ-63-07, хлорсеребряным электродом сравнения ЭВЛ-1МЗ и термокомпенсатором ТКА-7. В работе использовали реактивы квалификации не ниже «ч.д.а.».

Результаты и их обсуждение. При исследовании протолитических свойств ПН с целью идентификации его экстрактов зарегистрированы электронные спектры светопоглощения в интервале длин волн $400 \div 600$ нм при рН 2 и сопоставлены с литературными данными [22].

Как видно из рис. 1 полученный спектр (1) практически не отличается от приведенного (2) в работе [22]. Полосы поглощения широкие, с видимыми перегибами и размытыми максимумами при 510 ± 5 нм, что говорит о присутствии лабильной хромофорной системы сопряженных связей и влиянии присутствующих в молекуле ПН ауксохромов. Можно прогнозировать, что кислотно-основные формы данного органического соединения находятся в динамическом равновесии, характеризующиеся соответствующей величиной рК. С целью изучения кислотно-основных равновесий и определения рК ПН по результатам проведенных нами спектрофото-

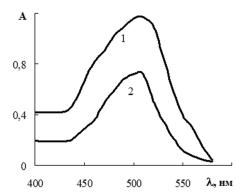
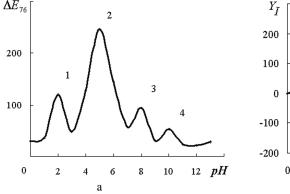



Рис. 1. Электронные спектры светопоглощения пеларгонидина (pH 2): 1 – спектр исследуемого экстракта; 2 – спектр из работы [22]

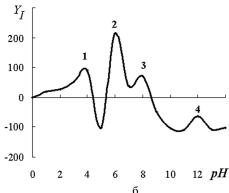


Рис. 2. Зависимость величины цветометрической функции от кислотности среды: а) полное цветовое различие; б) показатель желтизны

метрических исследований его водных растворов при варьировании кислотности и соответствующих расчетов построены кривые зависимостей (рис. 2) цветометрических функций ΔE_{76} и Y_I от pH среды.

Как видно из рис. 2 форма представленных кривых в исследуемом диапазоне значений рН указывает на существование пяти форм красителя, находящихся в динамическом равновесии в зависимости от кислотности среды. Известно, что для абсолютно белого тела $Y_I=0$, для желтых и красных — $Y_I>0$; синих и зеленых — $Y_I<0$. Точки перегиба на кривой зависимости величины Y_I от рН отвечают областям перехода из одной формы в другую. Нахождением абсциссы каждого максимума (рис. 2) получают соответствующие значения рН, численно равные величинам рК ПН в растворе. Максимумы на кривых (рис. 2) подтверждают наличие 4 значений рК (таблица) для разных форм молекулы ПН в растворе, каждая из которых характеризуется определенными значениями Y_I , знак которого указывает на окраску раствора реагента в широком диапазоне кислотности среды и величиной ΔE_{76} . С целью проверки правильности полученных ре-

Константы ионизации пеларгонидина (n=3, P=0,95)

		•		
pK _{SCD} [25]	pΚΔΕ ₇₆	pKY _I	$pK_{C\Phi M}$	рКрасч
$4,00 \pm 0,14$	$3,85 \pm 0,12$	$3,80 \pm 0,13$	$3,95 \pm 0,14$	-
$6,00 \pm 0,13$	$6,10 \pm 0,14$	$6,15 \pm 0,13$	-	-
$8,00 \pm 0,12$	$7,95 \pm 0,15$	$7,90 \pm 0,14$	-	7,73
$12,00 \pm 0,11$	$11,90 \pm 0,13$	$11,95 \pm 0,13$	$11,84 \pm 0,15$	-

зультатов нами определены рК двух гидроксильных групп спектрофотометрически, а также рассчитаны рК одного из фенольных гидроксилов молекулы пеларгонидина в среде программного пакета Marvin 5.9.1 методами QSPR (Quantitative Structure-Property Relationship — количественная взаимосвязь структурасвойство), которые используют в качестве дескрипторов промежуточные результаты квантово-химических расчетов [25, 26]. Для сравнения полученных значений рК ПН с использованием ΔE_{76} и Y_I , в таблице приведены ранее полученные результаты по определению рК с использованием функции SCD. Цветометрическая функция SCD — удельное различие цвета, используется для определения констант ионизации красителей в растворах методом химической цветометрии [15, 27], вычисляется согласно выражению (3):

$$SCD = \Delta S/\Delta pH , \qquad (3)$$

Таблица

где $\Delta pH = pH_1 - pH_2$; $\Delta S = |S_1 - S_2|$; S_1 , S_2 – насыщенность цвета исследуемых растворов при pH_1 и pH_2 соответственно.

Цветометрическую функцию насыщенности цвета рассчитывали по формуле (4):

$$S = \sqrt{(A)^2 + (B)^2} \ , \tag{4}$$

где A и B координаты цвета в системе CIELAB.

Как видно из рис. 2 и таблицы количество определенных нами констант соответствует количеству ионогенных групп, способных к кислотно-основной диссоциации. Значения рК, полученные с использованием ЦФ Y_I и ΔE_{76} коррелируют между собой и установленными нами ранее [27], а также близки по величине с определенными спектрофотометрически и рассчитанными теоретически. Это указывает на достоверность полученных результатов и принципиальную возможность использования данных ЦФ для исследования протолитических равновесий в растворах красителей без необходимости оперирования равновесными концентрациями соответствующих ионно-молекулярных форм. Для выявления преимуществ предлагаемых ЦФ перед функцией SCD рассмотрим логическую цепочку необходимых расчетов при использовании каждой из ЦФ:

- SCD: 1) Спектр светопоглощения → 2) Координаты цвета XYZ → 3) Координаты цвета LAB →
 - 4) Насыщенность цвета $S \rightarrow 5$) Удельное различие цвета SCD.

 ΔE_{76} : 1) Спектр светопоглощения \rightarrow 2) Координаты цвета XYZ \rightarrow 3) Координаты цвета LAB \rightarrow

4) Полное цветовое различие ΔE_{76} .

 Y_I : 1) Спектр светопоглощения \to 2) Координаты цвета XYZ \to 3) Показатель желтизны Y_I .

Как видно, использование ЦФ ΔE_{76} и Y_I позволяет рациональнее алгоритмизировать, автоматизировать, упростить и сократить математический аппарат по сравнению с существующими подходами метода химической цветометрии и классических физико-химических методов, давая при этом удовлетворительные результаты.

Выводы. На основании данных спектрофотометрических исследований растворов пеларгонидина в интервале кислотности среды рН $1 \div 14$ рассчитаны ЦФ показателя желтизны и полного цветового различия. На примере пеларгонидина показана принципиальная возможность использования указанных ЦФ при изучении протолитических равновесий и для определения констант ионизации красителей в водных растворах.

В целом следует отметить, что применение показателя желтизны и полного цветового различия позволяет упростить математический аппарат и легко автоматизировать расчеты по сравнению с существующими подходами метода химической цветометрии и классическими физико-химическими методами.

РЕЗЮМЕ

На підставі даних спектрофотометричних досліджень водних розчинів пеларгонідину в широкому інтервалі кислотності (рН) розраховані кольорометричні функції показника жовтизни і повного колірного розрізнення. Показана принципова можливість їх застосування для вивчення кислотно-основних рівноваг та визначення констант іонізації пеларгонідину у водних розчинах.

Ключові слова: повне колірне розрізнення, показник жовтизни, кислотно-основні властивості, константи іонізації, пеларгонідин.

SUMMARY

The calculations of chromaticity yellowness index function and the CIE color difference function were made for pelargonidin aqueous solutions based on the array of spectrophotometry data in a wide range of medium's acidity (pH). It was shown the principal possibility to use these chromaticity functions for acid-base equilibria study and ionization constants determination of pelargonidin in water solutions.

Keywords: CIE color difference, yellowness index, acid-base properties, ionization constants, pelargonidin.

СПИСОК ЛИТЕРАТУРЫ

- 1. Шорина Н.В. Протолитические свойства фенолов гваяцильного ряда в системе вода ацетон / Н.В. Шорина, Д.С. Косяков, К.Г. Боголицын // Журнал прикладной химии. 2005. Т. 78, вып. 1. С. 27.
- 2. Азатян В.В. Ингибирование цепных реакций / В.В. Азатян, Е.Т. Денисов. М.: Черноголовка, 1997. 267 с.
- 3. Рогинский В.А. Фенольные антиоксиданты / В.А. Рогинский. М.: Наука, 1988. 242 с.
- 4. Potentiometric determination of aqueous dissociation constants of flavonols sparingly soluble in water / J.M. Herrero-Martinez, C. Repolles, E. Bosch et al. // Talanta. 2007. Vol. 74. P. 1008-1013.
- 5. Мчедлов-Петросян Н.О. Современные методы экспериментального определения констант диссоциации органических кислот в растворе / Н.О. Мчедлов-Петросян // Журнал общей химии. 2009. Т. 79, вып. 9. С. 1505-1531.
- 6. Зенкевич И.Г. Определение констант диссоциации соединений, окисляющихся кислородом воздуха в водных растворах (на примере кверцетина) / И.Г. Зенкевич // Журнал аналитической химии. 2010. Т. 65, вып. 4. С. 382-387.
- 7. Basic aspects and application of tristimulus colorimetry / K. Prasad, S. Raheem, P. Vijayaleksmi, C. Sastri // Talanta. 1996. Vol. 43. P. 1187-1206.
- 8. Иванов В.М. Химическая цветометрия. Возможности метода, области применения и перспективы / В.М. Иванов, О.В. Кузнецова // Успехи химии. − 2001. − Т. 70, №5. − С. 411-428.
- 9. Домасев М.В. Цвет, управление цветом, цветовые расчеты и измерения / М.В. Домасев, С.П. Гнатюк. СПб.: Питер, 2009. 224 с.
- 10. Ивенс Р. М. Введение в теорию цвета / Ивенс Р. М. М.: Мир, 1964. 442 с.
- 11. Кривошеев М. И. Цветовые измерения / М. И. Кривошеев, А. К. Кустарев. М.: Энергоиздат, 1990. 240 с.
- 12. Кириллов Е.А. Цветоведение / Е.А. Кириллов. М.: Легпромбытиздат, 1987. 128 с.
- 13. Зернов В.А. Цветоведение / В.А.Зернов. М.: Книга, 1972. 239 с.
- 14. Джад Д. Цвет в науке и технике / Д.Джад, Г.Вышецки М.: Мир, 1978. 592 с.
- 15. Иванов В.М. Цветометрические и кислотно-основные характеристики пирогаллолового красного и бромпирогаллолового красного / В.М.Иванов, А.М.Мамедова // Вестн. Моск. ун-та, сер. 2. − 2002. − Т. 43, №3. − С. 167-171.
- 16. Исследование протолитических равновесий в растворах красителей с использованием функции полного цветового различия / А.Н. Чеботарёв, Д.В.Снигур, И.С.Ефимова, Е.В.Бевзюк // Укр. хим. журн. −2012. − Т. 79, № 1. − С. 18-21.
- 17. Бриттон Г. Биохимия природных пигментов / Г. Бриттон М.: Мир, 1986. 394 с.
- 18. Красільнікова Л.О. Біохімія рослин / Л.О. Красільнікова, О.О. Авксентьєва, В.В. Жмурко Харків: Основа, 2007. 191 с.
- 19. Смирнов Е. В. Пищевые красители / Е.В. Смирнов. СПб: Профессия, 2009. 352 с.
- 20. Lila M. A. Anthocyanins and human health: an in vitro investigative approach / M.A.Lila // J. Biomed. Biotechnol. 2004, № 5. P. 306-313.
- Anthocyanins in medicine / E. Kowalczyk, P. Krzeliński, M. Kura et al. // Polish J. Pharmacol. 2003. Vol. 55. P. 699-702.
- 22. Клышев Л.К. Флавоноиды растений / Л. К. Клышев, В. А. Бандюкова, Л. С. Алюкина. Алма-Ата: Наука, 1978. 220 с
- 23. Губен И. Методы органической химии / И. Губен. Т. 3. М.: ГХИ, 1935. 676 с.
- 24. Лайтинен Г. А. Химический анализ / Г. А. Лайтинен. М.: Химия, 1966. 656 c.
- 25. Kunal Poy. Predictive QSPR modeling of the acidic dissociation constant (pKa) of phenols in different solvents / Kunal Poy, Paul L. A. Popeliel // Journal of Physical Organic Chemistry. 2009. No 22. P. 186-196.
- 26. Методика визначення констант дисоціації флавоноїдів / Н.І. Біла, О.В. Білий, Л.М. Пронько, О.А. Попов // Вісн. Донецьк. нац. ун-ту. Сер. А: Природн. науки. 2012. № 2. С. 110-114.
- 27. Метод кольорометрії в дослідженні кислотно-основних характеристик барвників рослинного походження / О.М. Чеботарьов, І.С. Єфімова, Н.А. Борисюк, Д.В. Снігур // Методы и объекты химического анализа. 2011. Т. 6, № 4. С. 207-213.

Поступила в редакцию 11.02.2013 г.