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In this paper, the identities defining the varieties /4, él , éz, which are similar to the variety of semisymmetric
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shown.
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Introduction
D.C. Murdoch [1] showed that every medial quasigroup, i.e., a quasigroup defined by the equality
Xy -Uv=XU- YV, is isotopic to some abelian group. Medial quasigroups are obtained by relabelling the entries

and re-arranging the rows and columns of a Latin square of some abelian group. R.H. Bruck gave a general
method of constructing medial quasigroups from an abelian group (it is a well-known Toyoda-Bruck theorem
[2]). T-quasigroups coincide with their center in the class of quasigroups and have the same role as abelian
groups in the class of all groups. Every medial quasigroup coincides with its center in class of quasigroups,
because it is a T-quasigroup. For T-quasigroups this fact was shown by G.B. Belyavskaya [3]. Medial
quasigroups and related problems were studied by J.Jezek and T. Kepka [4], K.K. Shchukin [5],
V.A. Shcherbacov [6], F.M. Sokhatsky [7].

According to A. Sade [8], a groupoid or a quasigroup which satisfies the identity xy-X=1Y is called

semisymmetric. He also established properties and structure of semisymmetric quasigroups.
I.M.H. Etherington [9] and A. Sade [8] showed that every semisymmetric groupoid is necessarily a
semisymmetric quasigroup. V.V. lliev [10] studied a construction of the semisymmetric algebras over a
commutative ring with unit. F. Radé [11] found the necessary and sufficient conditions for existence of
semisymmetric group isotopes of prime order. H. Krainichuk [12] established the criterion of semisymmetry of
group isotopes of an arbitrary quasigroup.

F. Sokhatsky [13] proposed a symmetry concept for parastrophes of quasigroup varieties and their
quasigroups. This symmetry concept is used for investigation of parastrophes of quasigroup varieties and, in
particular, quasigroups and their parastrophes. F. Sokhatsky’s symmetry concept generalizes the symmetry
known as triality which was investigated by J.D.H. Smith [14]. If a o -parastrophe coincides with a quasigroup
itself, then o is called a symmetry of the quasigroup. The set of all symmetries of a binary quasigroup forms a

group, which is a subgroup of the symmetry group S3. According to the symmetry group, there are six classes

(varieties) of quasigroups: middle symmetric, left symmetric, right symmetric, semisymmetric, totally symmetric
and asymmetric (which consists of quasigroups with a unitary symmetry group).

An identity with mutually invers coeficients in its canonical conditions will be called a semisymmetry-
like identity. A variety defined by such identity will be called a semisymmetry-like variety. In this article, the
following 10 identities

X-(yu-v) =y-(xu-v), 0] (X-yu)-v=(x-yv)-u, (i)
((xy-u)l-v)-x=vy-u, (iii) (xl-ryu)-yv=u-xv, (iv)
X-(yr(U-VX))=U-Vy, v) Xy-(uy!V)= Xv-u, (vi)
X-(y-uv) = (vx-y)-u, (vii) X-(y-((u-xv)))-vy =u, (viii)
xy-(((yu-v)-x)-u) =v, (ix) (xy-u)-(x-vu) = yv )

are considered.

The identity (i) is semisymmetry-like and defines the variety of semisymmetry-like quasigroups, the
identities (ii)-(x) define some its subvarieties and their parastrophes. The listed identities define seven varieties
which are distributed into three trusses. Throughout the article, we will use the following notations: 4§ denotes a

variety defined by the identitity (i); 4, denotes a variety defined by the identitity (vii); 4, denotes a variety
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defined by the identitity (x). All identities imply group isotopism that is why they are considered in the class of
all group isotopes. A notion of canonical conditions of an identity is introduced to establish connections among
the identities and to describe quasigroups belonging to the corresponding varieties.

In this paper, canonical conditions of all listed identities are found, spesificaly, relationships among
canonical conditions of parastrophic identities are established (Theorem 5, Lemma 14, Lemma 15). Varieties 4§,
4, and 4, contain isotopes of an abelian group. They are subvarieties of medial quasigroups, which are similar

to the variety of semisymmetric group isopopes. Coefisients of the canonical conditions of the identities defining
all these varieties and coefisients of the canonical decompositions of all semisymmetric group isotopes coincide.

All quasigroups belonging to 4, 4, and Ajand their parastrophic varieties are described. In particular,

constructive conditions for building semisymmetric group isotopes are established (Corollaries 19-22).
According to the symmetry concept, varieties and corresponding trusses of varieties are characterized
(Theorems 6-8).
1. Preliminaries
Ir
A quasigroup is an algebra (Q; -, -) satisfying the identities
| | r r
(x-y)-y=x (X-y)-y=x x-(x-y)=Y, X-(X-y)=Yy. €3]

| r

The operation (-) is called main and (-), (-) are its left and right divisions. These operations and their dual,

which are defined by
S sl | sr r
X-Y=Y-X X-Y=Y-X X-y=Yy-X
are called parastrophes of (-) and the defining identities are called primary. Last three relationships establish

lr lrsslsr
bijection among identities of signature (-,-,-) and (,-,-,-, -, - ). Therefore, throughout the article we consider

I rsslsr
identities on quasigroups of signature (-,-,,-, -, - ). All parastrophes of (-) can be defined by

O
X " X5 = X35 <= XXy =X3,

where o e Sg:={z,1,r,s,sl,sr}, s:=(12), I '=(13), r:=(23). It is easy to verify that
o

holds for all o,z e 53 .

1.1. Notations and definitions.

Transformation of an identity id to an identity id’ using primary identities, external left and external
right divisions is called primary (parastrophic) transformation [15].

It easy to see that a mapping (o; () — (C-;) is an action on the set of all quasigroup operationson Q . A
stabilizer Sym(-) is called a parastrophic symmetry group of (-). Thus, the number of different parastrophes of
a quasigroup operation () depends on its symmetry group Sym(-) . Since Sym() is a subgroup of S, then
there are six classes of quasigroups. A quasigroup is called

e asymmetric, if Sym(-) ={¢}, i.e., all parastrophes are pairwise different;

e middle symmetric or commutative, if Sym(-) o{z, S}, i.e., it satisfies Xy =yx;

o left symmetric, if Sym(-) o{z,r}, i.e., it satisfies X-xy=y;

e right symmetric, if Sym(-) o{s, 1}, i.e., it satisfies Xy-y=X;

e semi-symmetric, if Sym(-) © Ag, i.e,, it satisfies X-yx=Y;

o totally symmetric, if Sym()=Ss, i.e., all parastrophes coincide and in other words Xy=Yyx and
X+ Xy =Y hold.
Let P be an arbitrary proposition in a class of quasigroups < . The proposition P is said to be a o -

parastrophe of P, if it can be obtained from P by replacing every 7 -parastrophe with ro* for every 7 € Sg;
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? s denotes the class of all o -parastrophes of quasigroups from A .
Theorem 1. [13] Let < be a class of quasigroups, then a proposition P is true in < if and only if P
istrue in “oA .

Corollary 1. [13] Let P be true in a class of quasigroups « , then °P is true in « for all
o eSymdk .

Corollary 2. [13] Let P be true in a totally symmetric class # , then P istruein & forall o .
Corollary 3. [13] Symmetry groups of parastrophic varieties are conjugate, that is

YMEA) = o(ymA)o .
Proposition 4. If A =B, then A = B for every o e S3.

Definition 1. Transformation of the identity id to the identity “id is called a o -parastrophic

transformations, if it can be obtained by replacing main operation with some its ot -parastrophe.
Two identities are called
e equivalent, if they define the same variety;
e o -parastrophic, if one of them can be obtained from the other by a o -parastrophic transformation
(according to Theorem 1, o -parastrophic identities define o -parastrophic varieties).
Example 1. Let identity (i) is a proposition P . The proposition P, e, identity, which is s -
parastrophic to (i) can be obtained from (i) by replacing every ¢ -parastrophe with s -parastrophe. Thus, s -
parastrophe of the identity (i) has the form

S S S S S S
x-((y-u)-v)=y-((x-u)-v).
Using the definition of s -parastrophe, we obtain (v-uy)-X = (v-ux)- Yy . It coincides with (ii).

According to Theorem 1, if proposition P defines a class of quasigroups < , then P defines A . It

means, the identity (i) defines variety &, therefore s -parastrophe of (i), i.e., (ii) defines variety 55 .
1.2. On group isotopes. A groupoid (Q;-) is called an isotope of a groupoid (Q;+) iff there exists a triple

of bijections (J,v,7), such that the relation x-y= y(5’1x+v’1y) holds. The triple of bijections is called an
isotopism. An isotope of a group is termed a group isotope.

Definition 2. [16] Let (Q;-) be a group isotope and 0 be an arbitrary element of Q , then the right part of
the formula

X-y=ox+a+ fy )

is called a 0 -canonical decomposition, if (Q;+) is a group, O is its neutral element and 0= 80=0. We will
say that O defines the canonical decomposition, (Q;+) is its decomposition group, & and £ are its left and
right coefficients, a is its free member. A canonical decomposition will be denoted by (+,0,«, 3,a).

Theorem 2. [16] An arbitrary element of a group isotope uniquely defines a canonical decomposition of
the isotope.

Recall a variable is quadratic in an identity, if it has exactly two appearances in this identity. An identity
is called quadratic, if all variables are quadratic. An identity is called gemini [17], if it is a trivial equality in an
arbitrary TS-loop.

Theorem 3. [17] If a quasigroup satisfies a non-gemini identity, then it is isotopic to a group.

Corollary 5. [18] If a group isotope (Q;-) satisfies the identity

Wy (X) - Wo () = W3 (y) - Wa(X) @)
and the variables x, y are quadratic, then every group being isotopic to (Q;-) is commutative.

It is easy to verify that the following proposition is true.
Proposition 6. A triple («, ,7) of permutations of a set Q is an autotopism of a commutative group

(Q;+) if and only if there exists an automorphism @ of (Q;+) and elements b,c €Q are such that
a=Le_ 0, £ =L0, v =Lc0.
This proposition immediately follows
Corollary 7. Let (Q;+,0) be an abelian group, &, A, 2, 33, P4 permutations of Q , 0 =0 and
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a(Pix+ PoY) = BaX+ BaY,

holds for all x,y €Q, then « is an automorphism of the group.

It is easy to verify that the following lemma holds.

Lemma 8. Let (Q;+) be an abelian group, ¢j,f; be its automorphisms and &;,b; be its elements,
i =1 2,3,4. Then the equality

X + 81 +apXo + 8y + agXz + a3+ auXg +ay = LiXg + 0+ LPoXo + Dy + Paxg + 3+ LaXy + Dy
isequivalentto o = f, 1=1,2,3,4, gy +ay +ag+ay =b +by + b3 +by.

It is easy to prove that parastrophes of an isotope of a commutative group have the following forms

xfyzax+a+ﬂy; x§y=@(+a+ay;
| |

x-y=at(x—a—f); xs- y=a H(-px-a+y); (4
r sr

x-y:,B_l(—ax—aer); X - yzﬂ_l(x—a—ay);

Proposition 9. A quasigroup is a group if and only if coefficients of its canonical decomposition are
identical permutations.

Systematizing all criteria on symmetry, H.V. Krainichuk [12] gave a classification of group isotopes
according to their symmetry groups and formulated the following corollary about classification of isotopes of
commutative groups.

Corollary 10. [12] Let (Q;) be an isotope of a commutative group and (2) be its canonical

decomposition, then (Q;+) is abelian and
1) (Q;) is commutative if and only if & = 3;
2) (Qs) is left symmetric if and only if S =—z;
3) (Q;) is right symmetric if and only if @ =—¢;
4)  (Q;) is totally symmetric if and only if o = f=—1;

5) (Q;) is semi-symmetric if and only if ¢ is an automorphism of (Q;+), £ = at a®=—1, ca=-a;

6) (Q;) is asymmetric if and only if —z# a # % — and at least one of the following conditions is true:

o is not an automorphism, S # al a®+—1, caz-a.

2. Parastrophic identities
In this section, we prove that parastrophic equivalency divides the given identities (i)-(x) into three
blocks: (i)-(vi), (vii)-(ix) and (x).
Lemma 11. The identities (ii), (iii), (iv), (v), (vi) are s-, |-, r-, sl-, sr-parastrophes of (i)
respectively.
Proof. In Example 1, we have shown that s -parastrophe of (i) is (ii).
According to the definition of parastrophic statements, | -parastrophe of (i) is the following identity
| [ | [
x-((y-u)-v) =y-((x-u)-v).
Replace y with yv-u and X with xv-u and apply the first identity of (1):
| |
(xv-u)-y=(yv-u)-x.
According to the first identity from (1) for subterms, we obtain (iii), so | -parastrophe of (i) is (iii).
r -parastrophe of the identity (i) is

r r r r r r
x-((y-u)-v)=y-((x-u)-v).
Apply the third identity of (1) for subterms:

r r r r r
X-(y-((x-u)-v))=(y-u)-v.
Replacing u with Xu in the obtained identity and using the third identity from (1), we have

X-(y-(u-v))=(y-xu)-v.
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Substitute u - yv for v, then by the third identity of (1), we obtain

r r
Xv=(y-xu)-(u-yv).
r
According to the third identity from (1) for subterms, we receive (Y- Xu)-Xv=u-yv, that is the identity (iv). It

means (iv) is I -parastrophe of (i).
s -parastrophes of (iii) and (iv) give (v) and (vi) respectively, that is sl - and sr - parastrophes of the

identity (i) respectively. o
Lemma 12. Identity (vii) and its s -parastrophe coincide. |- and sr-parastrophes, r- and sl -
parastrophes of (vii) coincide with (viii) and (ix) respectively.
Proof. Can be proved similarly to Lemma 11. o

Lemma 13. All parastrophes of the identity (x) coincide with (x).
Proof. To prove this lemma it is enough to show that s - and | -parastrophes of the identity (x) coincide

with (x), since {s,1} generates the group Ss. a]

3. Canonical conditions of identities

It is easy to see that none of the identities (i)-(x) is gemini, so by Theorem 3, every quasigroup satisfying
at least one of the identities is a group isotope. We introduce a notion of canonical conditions, which is a very
effective tool for describing subclasses of a group isotope variety and for establishing their properties.

Definition 3. Conditions for components of a canonical decomposition are called canonical conditions of
an identity, if they hold exclusively for those group isotopes, which satisfy the identity.

Using the given definition, Toyoda-Bruck theorem [3, Theorem 2.10, p. 33] can be reformulated as
follows:

Theorem 4. [3] The variety of medial quasigroups is a subvariety of the variety of all group isotopes and
is described by the following canonical conditions: commutativity of canonical decomposition group and
commuting of its coefficients.

Canonical conditions of the identities (i), (vii), (x) are described in the following theorem:

Theorem 5. Varieties being defined by the identities (i), (vii), (x) are subvarieties of the variety of all
medial quasigroups and are described in this variety by the following canonical conditions:

1) B=a* for the identity (i);
2) B=at a®=1, a*a+ala—aa—a=0 for the identity (vii);

3) p= a_l, a® =~ for the identity (x),
where (+,0, a, f3,a) denotes a canonical decomposition of a group isotope.
Proof. As was mentioned above, every quasigroup satisfying at least one of the identities (i), (vii), (X) is a
group isotope. Let (2) be its canonical decomposition.
1) Let (Q;) be a quasigroup satisfying the identity (i), then it is a group isotope. Since quadratic
variables x and y satisfy (3), then by Corollary 5, (Q;+) is a commutative group. Applying (2) to (i), we have:
ax+a+ fBlalay+a+ pu)+a+ ) =ay +a+ Bla(ax+a+ pu)+a+ [v). )
Put u=v =0 in (5) then according to Corollary 7, £ is an automorphism. Analogically, putting x=v =0, we
receive an automorphism Sea . Herefrom, « is an automorphism as well.
Since o and # are automorphisms of a commutative group (Q;+), the identity (5) has the form
O(X+a+,3a2y+,Boﬁ+,BaﬂJ +,6’a+ﬂ2V:ay+a+,Ba2X+,Baa+,6’a/iJ +ﬂa+ﬁ2v.
By Lemma 8, the last equality is tantamount to the conjunction
a=pa?, pal=a, paf=paf, p>=p> a+pPoa+pPa=a+pfoa+/pa.
This conjunction is equivalent to the relationship S = at. Thus, condition 1) holds for an arbitrary quasigroup
(Q;-) satisfying (i). Let 4 denote the variety defined by (i). The quasigroup (Q;) belongs to 4 and

X-y:ax+a+a_1y is its canonical decomposition. By Theorem 4, (Q;-) is medial. Since an arbitrary

quasigroup of 4 is medial, then the variety /4 is a subvariety of the variety of medial quasigroups.

r |
2) Let (Q;) be a quasigroup satisfying (vii). Replacing X with v-x and u with u-v and using the

second and the fourth identities from (1), we obtain
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(vrx)- yu = xy-(ul-v).

Since (Q;) is group isotope, then by Corollary 5, selecting the variables x, u we conclude that canonical
decomposition group is commutative. Consider the identity (x). Replace the operation (-) with (+) according to
2):
@ ax+a+ By +a+ plau+a+ ) =ala(av+a+ pX)+a+ gy)+a+ pv. (6)
Put u=v =0 in (6) then by Corollary 7, & is an automorphism. Similarly, from x=v =0 transformation £
is an automorphism. Then (6) has the form

ax+a+ﬁoy+ﬂa+ﬂ2au +ﬁ2a+ﬂ3v=a3y+a
By virtue of Lemma 8, the conjunction

azazﬂ, pa=af, ﬁzazﬂ, ﬁ?’ =, a+ﬁa+ﬂ2a=a2a+aa+a
is equivalent to the last equality. This conjunction can be written as follows:
1

2a+a2ﬂx+aa+a,6y+a+ﬁu.

2

ﬂza_l, a® =1, a’a+aa—a ta—a?a=0.

The third equality is equivalent to a*a+ala-ca-a=0. Thus, we obtain conditions 2). Variety 4, which

is defined by the identity (vii) is subvariety of the variety of medial quasigroups, since conditions 2) satisfy
Theorem 4.
r |
3) Let (Q;-) be a quasigroup satisfying (x). Replacing y with x-y and v with v-u and using the

second and the fourth identities from (1), we obtain
yu-xv:(xfy)-(vl-u).

Since (Q;) is a group isotope, then by Corollary 5 selecting the variables x, u, we conclude commutativity of
its canonical decomposition group. Consider the identity (x). In (x) according to (2), we replace the operation (-)
with (+) :

ala(ax+a+ pgy)+a+ ) +a+ Blax+a+ Blav+a+ fu))=ay+a+ fv. ©)
Put y=u=0 in (7), then according to Corollary 7, £ is an automorphism, so the identity (7) can be written as
follows:

a(a(ax+a+/3y)+a+,6‘u)+a+,b’ax+ﬂa+/32av+ﬂ2a+ﬂ3u =ay+a+ pv.
Put Xx=Vv =0 in the last identity then by Corollary 7, « is an automorphism and the identity (7) has the form

a3x+a2a+a2ﬂy+aa+aﬂu +a+ﬂax+ﬂa+ﬂ2av+,62a+,63u=ay+a+ﬂ\/.

According to Lemma 8, it is equivalent to
a3+ﬂa=0, az,B:a, aﬂ+ﬂ3 =0, ﬁzazﬂ, a2a+aa+a+ﬁa+ﬂ2a=a.

This conjunction is equivalent to the conditions 3), since the second equality of conjunction implies f=a

2 3

1

and the third equality a:—,BZ =—qa“, ie, a” =—¢. If the identity (x) defines a variety &y, then 4, is
subvariety of the variety of medial quasigroups, because conditions 3) satisfy Theorem 4.

All transformations of the proof are equivalent. That is why the theorem has been proved. i

Note. Coefisients of the canonical conditions of the identity (i) and coefisients of semisymmetric group
isotopes coincide. The canonical conditions of (i) do not have any conditions for their coefisients and free
members.

The following two lemmas describe connections among canonical conditions of (i), (vii) and canonical
conditions of their o -parastrophes.

Lemma 14. Let o be a left coefficient of the canonical conditions of (i), then canonical conditions of the
identities (iii) and (iv) have the following forms:

1) Xoy=a x—a ta—a 2y for the identity (iii);

2) Xoy=-a’X—aa+ay for the identity (iv).

Proof. 1) Let 4 be a variety of a quasigroup defined by the identity (i). According to the definition, a

|
quasigroup (Q;) belongs to the variety | 5 if and only if its | -parastrophe (Q;-) belongs to the variety 4. By
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p. 1) of Theorem 5, this is equivalent to the existence of the commutative group (Q;+) and to its automorphism

a such that p. 1) of Theorem 5 holds. Then by virtue of (4), we obtain
|

X-y=a a—afzy. (8)

By Lemma 11, (iii) is | -parastrophe of the identity (i) then (8) is the canonical decomposition of quasigroups
|
which satisfy (iii). Denoting (-) =: () , (8) expresses the canonical conditions of the identity (iii), i.e., p. 1) of
this lemma holds.
2) In the same way, one can prove that

.
X-y=—a’X—ca+ay

1 1

X—a

r
is canonical condition of (iv) for (-) = (), that is the second condition of this lemma is true. o

Lemma 15. Let « be a left coefficient of the canonical conditions of (vii), then canonical conditions of
the identities (viii) and (ix) satisfy canonical conditions of (vii) and have the following forms:

1) Xoy=a *x—a ta—a 2y for the identity (viii);

2) Xoy=-a’X—oa+ay for the identity (ix).
Proof. The lemma is proved similarly to Lemma 14. In particular, conditions 2) of Theorem 5 satisfy

canonical conditions of (viii) and (ix), since they hold for (vii) and « is the first component of the canonical
conditions of the identity (vii). o

4. Varieties of quasigroups and their symmetry
According to the symmetry concept, trusses of varieties defined by given identities are characterized.
Quasigroups from each of these varieties are described according to their symmetry groups and the belonging to
well-known classes.
4.1. Symmetry of parastrophic varieties

Let & be a variety of quasigroups, then °«A is a o -parastrophe of <A . If Sym A = S3, then variety is
called totally symmetric; if Sym oA ={z,S}, i.e., A=, then oA is middle symmetric; if Sym A ={,1}, ie.,

A=A  then & is right symmetric; if Sym oA ={1,r}, i.e., A="A, then A is left symmetric.

A set of all pairwise parastrophic classes is called a truss. The notion of a truss is introduced by
F. Sokhatsky [13]. A truss of varieties is uniquely defined by one of its varieties. The number of different
varieties being parastrophic to & is 6/|Sym <A |, thatis 1, 2, 3 or 6. Consequently, a truss is considered a one-

element, a two-element, a three-element or a six-element one.
The following theorems describe trusses of varieties.
Theorem 6. Each of identities (i)-(vi) defines the same three-element truss of varieties. Moreover, if a

variety 4 is defined by the identity (i), then (ii) also defines 4, identities (iii) and (vi) define a variety 'A,
identities (iv) and (v) define a variety 5.
Proof. Let 4 denote the variety being defined by (i). Let (Q;-) be a quasigroup from 4 and

X- y:ax+a+a_1y

be its canonical decomposition (Theorem 5). The equalities (4) imply
s
X y:a_1x+a+ozy
S
which is a canonical decomposition of s-parastrophe of (Q;-). Since (oz_l)_l =a, then (Q;-) belongsto 4.
Therefore °4 = 4. This equality implies
'c8)="5 and r(S8)="5,
i.e.,
Srézlé and Slé:ré.

Taking into account Lemma 11 and the obtained equalities, a variety | 5 is defined by one of the identities (iii)
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and (vi), "4 by one of (iv) and (v).
It is well known that {s,I} generates symmetry group Sj. It means that the coincidence of s - and |-

parastrophes of a variety implies its totall symmetry. To prove that the truss {A'A, rA.S} is three-element it is

enough to show that 4 and 'é are different. For this purpose, we consider a quasigroup (Z;1;0), where Zq 4 is
a ring modulo 11 and
Xoy=3X+1+4y.

Since 37 =4, then by Theorem 5, (Z;1;0) belongs to 4. The equalities (4) imply
|
Xoy =31 (x—1—4y) =4x—4—16y = 4x+ 7 +6Y.

I
since 41 =36, then (Z;1;°) does not belong to 4, but belongs to ' 4. That is why 58 .

Thus, the variety 4 is middle symmetric and the corresponding truss is three-element. o

Corollary 16. The varieties 4§, 'é and "4 are middle symmetric, left symmetric and right symmetric
respectively.
Proof. The proof follows from Theorem 6 and Corollary 3, since Sym4 ={z,s} and

sym(%8) = 1(SymA) = Kz, sH = {11, 1s} = {o, 1},
sym("8) =r(SymA)r = r{s,spr ={rer,rsr}={;,1}. O

Theorem 7. Each of identities (vii)-(ix) defines the same three-element truss of varieties. Moreover, if a
variety /4, is defined by the identity (vii), then identities (viii) and (ix) define varieties 'él and %, respectively.
Proof. Let 4, denote the variety being defined by (vii). Lemma 12 implies Sél = /4, and the varieties
5, "5, are defined by (viii), (ix) respectively. Similarly to Theorem 6, the truss of varieties &,, '5,, "4, is

three-element, if 4, and 'él are different. Consider a quasigroup (Zg;*) being defined by
X*y=4xX+1+7y.

Since 41=7,4%=1and 4*.1+4%.1-4.1-1=0, then by Theorem 5, (Zg;*) belongsto A4, . (4) implies

|
x*y=4_1(x—1—7y) =7X—-7—-49y=7x+2+5y.
Because 7 1 =4%5, then (Zg;*) does not belong to /4, , but belongs to 'él. It means é1=|/§1.
So, the variety 4, is middle symmetric and the truss, which is defined by /4, is three-element. m]

Corollary 17. The varieties 4, , '@ and rél are middle symmetric, left symmetric and right symmetric
respectively.

Proof. The proof is the same as that of Corollary 16. m]
Theorem 8. The identity (x) defines a totally symmetric variety, i.e., (X) defines a one-element truss.
Proof. The proof follows from Lemma 13. m]

4.2. Description of quasigroups of varieties

In this subsection, taking into account given results and Corollary 10, we obtain partition of group
isotopes of varieties 4, 8,, & and their parastrophes.

Proposition 18. Quasigroups satisfying the identities (i), (vii), (x) are groups if and only if coefficients of
their canonical decompositions are identical permutations.

Proof. By Proposition 9, the statement is true. i

Remark 1. The condition of Proposition 19 implies that groups, which satisfy the identity (x) are

3 _ — of its canonical conditions, then =—z. It

Boolean. Indeed, when a =1 taking into account condition «
means that these groups are Boolean.

The following two corollaries describe all quasigroups, which belong to the varieties 5, 4,, 4> and
establish necessary and sufficient conditions of belonging a quasigroup exactly to one of the selected classes,
which are gived in brackets. Similarly to H.V. Krainichuk [12], we use the word ‘strictly’ to emphasize that the
class does not cointain any totally symmetric quasigroup.
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Corollary 19. All quasigroups from varieties 4 and 4, are distributed into five disjoint classes:
1) groups (ax=1);
2) totally symmetric quasigroups (o =—t1);

3) strictly commutative quasigroups (a2 =rand —1#a #1);
4) strictly semisymmetric quasigroups (a3 =—1,0a=—-a and a#—1);

5) asymmetric quasigroups (a2 #— and (a3 #—1 OF ca#—a)).
Proof. The proof is immediately follows from Corollary 10 and Proposition 18. o
Note. The classes of strictly commutative and strictly semisymmetric quasigroups of the varieties 4 and

A, are empty under the additive group of a field. But there exist examples of such quasigroups in rings.

Example 2. Consider the quasigroups (Zg;®) and (Zq;®) defined by

X®y=23x+3y and X®y=2x+3+5y.
They both belong to 4 and 4,. (Zg;®) is a strictly commutative quasigroup, since 3?2-9=1 and
—1#3%#1 (Zg;®) is astrictly semisymmetric because 28=8=-1,2-3=6=-3 and 2= 1.

The last corollary confirms that the classes of the quasigroups of varieties 4 and 4, which are described
in pp. 1)-4) coincide. The variety 4, is included in the variety 4 and they differ from each other by asymmetric
quasigroups, in particular, the following example shows that the varieties 4 and 4, are diferent.

Example 3. The quasigroup (Z;1;®), where xey=3x+1+4y belongs to 4, but does not belong to
A, , since 3P _g-1.

Corollary 20. All quasigroups from variety &, are distributed into five disjoint classes:

1) boolean groups (o =1);

2) nonboolean totally symmetric quasigroups (—z# a #1);
3) strictly semisymmetric quasigroups (ca = —a and o #—t);

4) asymmetric quasigroups (a2 #—1 and c@a = -a).
Proof. By virtue of Corollary 10 and Remark 1, the corollary is evident. o

The next two corollaries describe quasigroups of the parastrophic varieties 'é, s , Iél, rél .
Corollary 21. All quasigroups from varieties ! 5 and %1 are distributed into three disjoint classes:
1) totally symmetric quasigroups (& =1);
2) strictly left symmetric quasigroups (a2 =rand ax #1);

3) asymmetric quasigroups (a2 #1).
Proof. The proof is immediately follows from Corollary 10. o

Corollary 22. All quasigroups from varieties "5 and ré1 are distributed into three disjoint classes:
4) totally symmetric quasigroups (& =—t);
5) strictly right symmetric quasigroups (a2 =7 and a#—1);
6) asymmetric quasigroups (a2 #1).

Proof. The proof follows from Corollary 10. o
Corollary 23. The relationships

84, 15515, F5=T8,

=% 155 45, 55 5

hold for varieties 8, &;, &, and their parastrophes.

Proof. The inclusion &> 4 follows from Corollary 19 and Example 2. Since in Theorem 5 conditions
3) satisfy conditions 1), then &> &, . The quasigroup (Z;q;®) from Example 2 illustrates the correctness of
strict inclusion, since it belongs to the variety 4 and does not belong to 4, . The relationships for parastrophes

of 4 and 4, follow from Proposition 4. Since 4,=4, forall & < S3, then Ié:éz, '554. o
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Corollary 23. The semisymmetry-like variety 4 and its subvarieties 4&,, 4, contain the class of all

semisymmetry isotopes of commutative groups.
Proof. By Corollary 10 and Theorem 5, easy to verify that the statement of the corollary holds. m|

Conclusions.

The results of this article are systematized in the following table, whose first column contains the trusses
of varieties, the second one includes the varieties belonging to the corresponding truss, the third one provides the
identities, which define these varieties (equivalent identities are in the same row), the fourth one includes the
canonical conditions of the identities. In the last row the relationships among all varieties are given.

Truss | Variety Identity Canonical conditions
5=%5 (i), (i) X-y=ax+a+a ly
. |
A Iézs% (iii), (vi) X- y:a_lx_a_la_a_zy
"5=Sls | (v, ) X-y=—a?X—ca+ay
8= (vii) x-y=ax+a+a ly, a® =1, a*a+ala—ca-a=0
I |
A | A= | i)y g laa 2y, o® =1, afataa—aa—a=0
| r
=5 ) X-y=—a’x—ca+ay, a® =1, a*a+ala—ca-a=0
o
B9 b=, () X-y=ax+a+aly, a®=—
‘v’o-eS3
Aok, | 1558, N T T LY £ SELY £

The canonical conditions of the identities are constructive and allow to build the quasigroups of all
described varieties quite easily and to study their spectrum of quasigroups. It is necessary to find all identities
defining semisymmetry-like medial quasigroups and to describe relationships among the corresponding varieties.
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MHOT'OBH/JI HATIIB CAMETPUYHO-NIOIBHUX MEJIAJILHUX KBA3ITPYII TA IOT'O
MIJIMHOT OBUIU

0.0. TapkoBcbka

PE3IOME

V miii crarTi ONMMCAHO TOTOKHOCTI, SIKI BH3HAYAIOTH MHOTOBHIH /A, é1, éz, momibHi 1O MHOroBUAA

HaMiBCUMETPUYHUX i30TOMIB Tpynu. BCTaHOBIEHO MOBH, 3a SKHX KBasirpymua 3 4, él i éz 30iraroThcs i3

HANiBCUMETPHYHUMH i30TOMIAMH KOMYTATHBHOI TPyMH. 3TiJHO MPUHIMIYY CHMETPIi, OMMCAHO i TPY MHOTOBHAU Ta iX
napactpodHi MHOTOBHM | KBa3irpymu, siKi HAJekKaTh yCiM MM MHOTOBHIaM. [0Kka3aHO CHiBBIIHOLIEHHS MiX yciMa LUMHU
MHOTOBHIAMH.

Knmiouosl  cnosa: KBasirpyma, TOTOXHICTb, HapacTpod, CHMETpis, i30TON TPYNH, MHOTOBHI, MeIialbHUIA,
ACHMETPUYHHUIN, KOMYTATUBHHI, HAIlIB CAMETPHYHUIA, TOTAIHHO-CHMETPUYHHH.

MHOI'OOBPA3HE I10J1Y CUMMETPUYHO-TIOAOBHbBIX MEJJUAJIBHBIX KBASUI'PYIIII U ET'O
HOAMHOI'OOBPA3USL

0.0. TapkoBckasi

PE3IOME

B 3Toif cTaThe OMMCAHBI TOXECTBA, KOTOPhIE OMPEENAIOT MHOro00pasus A, él , éz, No00HEIE MHOT000PA3HI0

TMMOJTYCUMMETPUYCCKUX TPYNIIOBBIX H30TOIMOB. YcTraHoBIeHBI YCIIOBUA, TIPU KOTOPBIX KBAa3UT'PYIIIBI W3 é, él’ éz

COBIAJIAIOT C MOJYCHMMETPHUYECKUMH i30TONAaMHU KOMMYTaTHBHOHU rpynmsl. COrjiacHO NPHHIMITY CUMMETPUH, OIMCAHBI 3TH
TPU MHOTooOpa3us W MHOrooOpaswusi, mapacTpodHbl UM, U KBa3UTPYIIBl MPUHAAIEKAIINE BCEM STHM MHOro00pasusM.
IToxa3aHbl COOTHOIIEHHS MEKAY BCEMH TUMH MHOT000pa3UsIMHU.

Kniouesvie crosa: KBa3UTpyIa, TOKAECTBO, TAPACTPO], CHMMETPHS, H30TOII TPYIITEI, MHOT000pa3ne, MeJHaIbHbIN,
ACCUMETPHUYHBIA, KOMMYTATHBHBIH, Oy CUMMETPHUYHBINA, TOTAIbHO-CUMMETPUHBIN.
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