YVIK 512.562
Belousov V.D.

Doctor of Sciences in Physics and Mathematics, Professor, Corresponding Member of the
Academy of Pedagogical Sciences of the USSR

MUTUALLY INVERTIBLE QUASIGROUPS AND LOOPS
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1. Let @ be some fixed finite or infinite set and A be a binary operation defined on @ . The set @) with
the operation A is called a quasigroup if equations

A(a,x) =b, A(y,a)=Db

are uniquely solvable for arbitrary a, b € (). To be short, an operation A also will be called a quasigroup. If
a quasigroup A has a unit, i.e., if A(a,e) = A(e,a) =a then A is called a loop.
Two invertible operations are connected with every quasigroup A: left invertible operation ~!A defined
by the equation
Aly,a) =b, ie, y= ‘A(ba)

and right invertible operation A~' defined by the equation
Ala,z) =b, ie., x=A""(a,b).
It is easy to see that ~'4 and A~! are also quasigroups then for each of them there exist invertible operations;
1A has two invertible operations (7!4)~! and “}7!A). But ~{!A) = A, consequently we get one new
operation (7!A)~!. In general, five invertible operations
AT T AT, ()T ATt
can be obtained. Indeed, following Stein [15] we denote some permutation of three elements a, b, ¢ by
o: o(a,b,c) = (a,b,c). Then A%(a,b) = c is equivalent to the equality A(a’,b’) = ¢ . For example, if
o(a,b,c) = (c,a,b) then A ="1(A~1) because
AN (a,b) =c= A(c,a) = b.

If we consider all possible permutations of three elements a, b, ¢ we obtain five invertible operations listed
above and one more operation A . Note that

A ="M T = A
where A* is the operation received from operation A by commutativity: A*(a,b) = A(b,a) . Indeed,
[{A Y] YHa,b) =c= YA Y (a,c)=b= A (b,c) =a= A(b,a) =c,

ie., YA Y]t = A*. Equality ~Y[(714)7!] = A* can be proved similarly.
So, a system X4 of six quasigroups:

Ba={4, 7, AT AT, (T AT
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is connected with each quasigroup A which we will call a system of invertible quasigroups for A.
It is easy to see that, if B is one of the quasigroups of the system 3,4 then Xp = ¥4 . For example, if
B="1(A"1) then B~' = A*, ~B=A""! etc.

2. Remember the definition of isotopy of two quasigroups. Let B and A be two quasigroups defined on
Q@ . The quasigroups B and A are isotopic if there exist three one-to-one mappings «, f, v of @ onto itself
(permutations) such that equality

B(z;y) = v Aoz, By)

holds for all z, y of Q. We denote the ordered triple of the permutations («,3,7) by T and instead of the last
equality we write briefly B = AT or B = A5 If T = (o, 3,7) then we denote the triple (a~!, 371,y 1)
by T-'.If S = (a1,B1,7) then we denote the triple (aay,381,7y1) by TS. Then we have the following
propositions:

1) If B= AT then A= BT .

2)If C=BT, B= A" then C = AT e, (A5)T = AT .

Sometimes isotopy of quasigroups B and A will be denoted by B ~ A.

Propositions 1) and 2) imply that isotopy relation is symmetric and transitive and because A = ALY
(1 is the unitary permutation of the set @) then A ~ A. Therefore isotopy relation is an equivalence on the
set of all quasigroups defined on @ . The isomorphy of two quasigroups B and A is the particular case of
isotopy, namely if « = 3 = . In this case we write:

(04,0170[) =aand B = A(aaoﬁa) — A%,

3. Consider a relationship which exists between invertible operations and isotopy. Let A be an invertible
quasigroup of A. By T° we denote the same permutation in the triple (a,,7) that o permutates in the
triple (a,b,c) .

Lemma 1. (AT)7 = (A‘T)TF1

We prove the lemma only for one of the cases, for example, when A% ==1 (A7) ie., o(a,b,c) = (c,a,b).
If T=(a,B3,7) then T = (v,,8) . Let (AT)7(a,b) = ¢ then AT(c,a) =b or

7_1A‘7(ac, Ba) =, A’ (ace, fa) = b,

wherefrom
A% (Ba,vb) = ac, a~tA7(Ba,vb) = c,

(AP (ab) = e, (AT (a,b) =c,
consequently
o1
(AO’)T _ (AT)O"
Corollary. If B~ A then B° ~ A° .

Considering a system of invertible quasigroups ¥4 we can notice that it is divided into subsystems of
quasigroups isotopic to each other. Such a partition can be of the following types:

I) All operations of ¥4 are pairwise nonisotopic. We will name the number of equivalence classes of the
set X4 an index of the operation A . Then the index of the operation A of this type equals 6.

IIa) Let A=! ~ A. Then Corollary of Lemma 1 implies

AT~ T and [TATHT ~ (TA)T o AT~ (TA) T
i.e., we have the following partition:
Sa={A,AT {7, AT (A ()T
Similarly we obtain two more types:
Ib) X4 ={4, ~'A}, {47, (TA) 71}, {47, 7))
Ie) ¥a={AA7}, {7A (A7} {47, 7))
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The operations of the types Ila, IIb, Ilc have index 3.
) Let ~A™!') ~ A then

AT~ T or AT~ AL
But ~{A7!) ~ A implies
A D]t~ A e, A"~ AL

So, in this case the operations A*, A~!, ~!4 are isotopic to each other. It remains to consider the operation
(7!A)7!. But A7! ~ 74 implies

(A H P~ (T e, A~ (AL
Thus, the operations A, A7), (7!A)~! are isotopic to each other and we have the following partition:
Sa={A, THATH, (T, {ATh A AT

In this case the operation A has index 2.
IV) If A~ A=! ~ 714 then the proved statements for the types Ila, IIb imply

A~ YA and A~ (T'A)7!
and the proved assertion for type III implies that all operations from ¥4 are isotopic to each other, i.e., the
operation A has index 1. The obtained result can be formulated as the following theorem:

Theorem 1. There exists a bijection between all types of quasigroups A and partitions of a symmetric
group of degree 3 into the right cosets by ils subgroups.

Indeed, it is easy to prove that (A%)™ = A°" . For this purpose we must use the definition of the invertible
quasigroup A° with the help of the permutation o of S3.If A% ~ A then the set of all such o forms the
subgroup H of Ss. It implies that if A ~ A" then o and 7 belong to one right coset by « . Thus, there
exists a subgroup of the group Ss for every given type (and consequently some partition on the right coset of
its subgroup). Below we give these correspondences for each type:

1= {1}, Ta={1,(23)}, IIb={1,(13)},
e = {1,(12)}, Il = {1,(123),(132)}, IV = Ss.

Corollary 1. The type and consequently the index of the quasigroup A are invariant under isotopy.

The statement follows from the fact that if B~ A and A° ~ A then B? ~ B.
The index of the operation A is defined by the order of the permutation o # 1 for which A7 ~ A. It
implies

Corollary 2. The index of a quasigroup is invariant under the formation of invertible operations.

Indeed, let B = AT then B™ ' = A, wherefrom

B" 9 =A°~A, B" °~A, BT °"~A", B" °T~B.

But 77 'o7 has the same order as o .

4. Every quasigroup A can be connected with the following groups of permutations of the set @ (see [1]):

1. a group £4 of the left regular permutations:

La={X M(zy) = A(Asy), Yo,y € Q) (1)
2. a group R4 of the right regular permutations:

Ra = {p; pAlz;y) = Aw; py), Yo,y € Q};

3. a group €4 of the middle regular permutations: ¢ € €4 if there exists a permutation ¢*, such that
Alpzsy) = Az, ¢*y) forall 2,y € Q.
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The fact that £4, a4, €4 are groups is proved in [1]. In addition, it is possible to consider the group 5%
consisting of all ¢* . The listed groups of permutations play the same role for quasigroups, as nuclei do for loops
[5]. In [1] it is proved that if Q(A) is a loop then £4 is isomorphic to the left nucleus Ny and R4, €4 are
isomorphic to the right and the middle nucleus respectively and £41 = N, , where

a1 ={Al, A€ €4},

1 is the unit of the loop etc. If A € £4 then (1) implies AX1*) = A Thus, we have the particular case of
autotopism of the quasigroup A. It is well known [5] that a triple of permutations T = («, 8,7) of the set Q
is called an autotopism of a quasigroup A if AT = A. From Lemma, 1 it follows that T° " is an autotopism
of the invertible quasigroup A . Using this assertion it is easy to prove the following lemma:

Lemma 2. Let A be a quasigroup then

L1p=La, Rp CCy L4y CCy, Ry =NRa.

Indeed, let A € £4 or AT = A, where T = (\,1,)). The operation ~!A corresponds to the permutation
o= (13): ~'A= A3  According to the previous remark

70 =17 =70 = (A 1,\) =T

is an autotopism of the quasigroup
A° Z_lA, ie, A€ Loy

Thus, £4 C £-14 . But this implies £-14 C £4 because an arbitrary quasigroup can be substituted for A.
Consequently £-14 = £4. Let p € R-14. It means that € = (1,p,p) is an autotopism of the quasigroup
14 = AU3)  But then S13) = (p, p,1) is an autotopism of the quasigroup A and consequently

A(pz, py) = A(z,y) or Alpz,y) = Az, p'y).

That is why, p € €4, i.e., R-14 C £4. The second group of relationships of Lemma 2 can be proved in the
same way.

Corollary. Let
D4 ={p; Alpz,y) = Az, 97 'y)}.

It is easy to see that ®,4 is a group. We call it the group of central regular permutations. Obviously
Da C LaNLy. Ry € Dy arises from the foregoing. Reasoning in the invertible way, it easy to prove
the following

D4 CR-1y, ie, Dyg=NR-1,.

Similarly we obtain £4-1 =94 .

Lemma 3.
1) If A has the left unit, then B4 = £-14 .
3) If A has the right unit, then £4 =Cy-1.

Let ¢ € €-1,, it means that there exists a permutation ¢* such that

Az, y) =" Az, 0*y)

for all z,y € Q.
Let ~'A(px,y) = z then gz = A(z,y) . Simultaneously we have x = A(z, ¢*y) then pA(z, ¢*y) = A(z,y).
In this equality z and y can be any elements, in particular, let z =1 then p*y =y or ¢* = ¢~ !. That is
why we have
Az, 07 y) = Alzy) or pA(z,y) = A(z,0y), Lie, @€Ra
consequently €-14 C Ry . From Lemma 2 Ry C €-1y then Ry = €-14 . The second statement of Lemma 3
can be proved similarly.

Remark. If A is a loop (with a unit 1) then: 1) A* is a loop; 2) A~! and ~%A~!) have the left unit
1;3) A and (7!4)~! have the right unit 1.
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Theorem 2. Let A be a quasigroup. Then the following relations hold for groups of reqular permutations

of invertible operations:
1) Lo1p =84 2) S—lAng 3) Lar =R 4) S(*lA)*l =R

Loy =24 Lo, =2L4 Loy =24 Lo, =24
Lo1g=L4 Loig=L4 Lo1g=2L4 Loig=L4
5) 271(1471) =94
QCLL(AA) :QA
©_1(A_1) :9%,4

If A is a loop then the relations
Cayy=Cay1y=2La, Cua=Cay1)=Ry, Cu=0}

are added.

¢ ‘Proof.?’}We prove the equalities of the group 1). Lemma 2 and its corollaries imply the first and the
second equalities. Since A is an arbitrary operation then replacing A with ~'A we obtain

9‘{71(71,4) =©—1A, i.e., @—1A=mA.

The second group of the equalities is proved in the same way. The rest of the equalities follow from the equalities
of 1) and 2).

For example, R-14-1) =D 41 = L4

Relationships for the groups of the middle regular permutations are proved on Lemma 3 and on five groups
of equalities of Theorem 2.

5. If A is a loop then X4 does not consist only of loops. So, if A(x,y) = zy is a group then
A=Y (x,y) = 271y and, in general, A~! has no a right unit. That is why it is reasonable to consider such
isotopes of invertible operations for A which are also loops. We will do it in the following way. If A is a loop
with 1 then we consider a permutation I defined by A(z,Iz) =1, i.e., Iz is a right invertible of = .

We introduce the following two operations:

AP(z,y) = A I ay),  AMa,y) =" Az, Iy).

We show that A” and A% are loops with the same unit 1. The definition of 1 implies 11 = 1. We have seen
above, if A is a loop then A~! has the left unit 1. That is why

AP(Ly) = AN I 'Ly) = A" (1,y) =v.

Now let AP(x,1) = z’. Using the definition of the operation A” we conclude that A(I~'x,2') = 1, but
A(z,Iz) = 1 implies A(I"'x,z) = 1, wherefrom x = 2’. Two loops A” and A* will be called a right loop
and a left loop for A respectively. Thus, we can associate the loops A” and A* with every loop A. Their
consideration is prompted by invertible operations for groups or more generally 1P -loop [5]. The definitions of
AP and A* can be rewritten in the following way:

AP = (A—l)PA A)\ _ (—IA)SA7

)

where Py = (I71,1,1), Sa = (1,1,1) and I = I4 are defined by the equality A(x,Isx) = 1. It is easy to
show that I4» = I4» = I~!. Hence as a result we obtain relationships:

Pao = Py = Py', Sao =S =St

As for the invertible quasigroups we can consider invertible loops for loops A” and A etc., and we define:
(AP)P = AP° | (AP)) = APX ete.

For quasigroups we have seen that there exist only six invertible quasigroups (including the quasigroup
itself). To clarify analogical question for invertible loops, we give the following lemmas without proof:

Lemma 4. 47" = A, AV = A,

Lemma 5.
AP = [fl(Afl)](Lrl,[—l)’ Ap)‘ﬂ _ (A*)I—l’
APA = [71(14—1)](1,1,1); AN — (A*)I,
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Thus, two previous lemmas imply that the system £9 of invertible loops of a loop A consists of the operations:
A, AP, AN APA AN APAP AR APAPA  AAPAR

But Lemma 4 and Lemma 5 and the following lemma imply that there are only six loops with the precision up
to isomorphism.

Lemma 6. AP® = A | AN = A°) where o is an arbitrary permutation of the set Q.

Now consider the last two equalities of Lemma 5. From them we deduce the equality APAPT = A o ,
wherefrom AMX = (4P2)1° e AMX and AP are isomorphic. That is why in the system X9 all loops
of the form A**? ... or AP .. having more than three letters in the upper index are isomorphic to the
following six loops:

A, AP AN AP AN AP

6. We call aloop A a G -loop if it has the following property (G): if aloop B is isotopic to A then B
is isomorphic to A. It is well known [6] that groups are G -loops, some Moufang loops are also G -loops. The
following theorem shows that the property (G) is invariant under the formation of invertible loops.

Theorem 3. If A is a G -loop then every operation A° of X9 is a G -loop.

It is enough to consider the principal isotopes ( B is principal isotope of A if B = A1) hecause any
isotope of A is isomorphic to a principal isotopy [5]. If a loop B is principally isotopic to A: B = AT then the
isotopism T has a form: T = (R; ', L', 1) where Ryx = A(x, k), Loz = A(¢,x) [5]. In this case m = A(¢, k)
is a unit of the loop B . Let us formulate the lemma which we will accept without proof:

Lemma 7. (AT)? = (AP)T" | (AT) = (AMT" | where TP = (IV;; LY 1, VoL Y, T = (1, 7'V, Ry L R Y)

m

and the permutation V, is determined by the equality Voo = A™1(x,a) .

¢ ¢proofof Theorem 3.” It is enough to show that A” and A* are G-loops and to the other invertible
loops, the induction is applicable. If A is G -loop then for any elements k and ! € @) there exist a permutation
a of @ suchthat AT =A°, T = (R;l, L[17 1) . Prove that A” is also a G -loop. For this purpose we calculate
(AT)? . Since AT = A“ then in view of Lemma 6 and Lemma 7 (AT)? = A% or (A?)Tr = AP* . We rewrite
the last equation in a more detail way:

(Aﬂ)(IV,ZlLleLLZl) — AP
wherefrom )
(a0) V" ) — (), ©)
Let R,z = AP(x,u), L,o = A?(v,z). Calculating these two permutations. We have

Ruyx = A" (I e, u) = V, I ',

wherefrom R, = V,I~'. For L, we have L,z = A=Y (I7'v, ), wherefrom

A(I7Y, Lyx) =2, Lj-1,L,=1

—1
I—1v

consequently L,=1L . From the equalities for R, and L, we find

IV, '=R;', Lia,=L;" or L,=L;",
therefore the equality (2) has the form
(Ap)(fi;lifi»l) — (AP)eLe,
But m = A(,k) and if I£ =n then {=1"'n, k= A"1(I"'n,m), wherefrom
(AP BRI = (gpyale (3)

Since m and m can be arbitrary elements from @ then (3) shows that a loop being principally isotopic
to the loop A’ is isomorphic to A”, ie., A” is also a G -loop. The fact that A* is a G -loop can be proved
analogically.
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B3AE€MHO-OBOPOTHI KBASITPVYIIU TA JIVIINA

Binoycos B./I.

PE3IOME

B miit cTaTTi po3rIagaoThCs AeKi 3aIeKHOCTI MizK B3aEMHO-000POTHIMH KBAa3irpymaMu i JIyllaMu 33, T0I0-
MOTOI0 TIEPETBOPEHHS 130TOIil, JaHa Kiaacudikalia KBa3irpy i Jym 3a KJIacaMu i 3 11i€l TOIKHU 30py JTOBOJUTHC
PSIJl TBEP/IXKEHb, Kl J0noBHIOITH pesynbratu A. Cana [1], HI. Creiina [15], P. Apmi [4].

Kamow06i cao6a: BinapHa ornepailis, KBasirpyua, Jyna, npasa (JiBa) 000poTHA ONepallis, CUHCTeMa 0G0POTHAX
KBa3irpym, 130TOI.

B3AVMOOBPATHBIE KBASUTPVYIIITHI N JIVIIBI

Bemaoycos B./.

PE3IOME

B macrosmgeil crarbe paccMATPHBAIOTCA HEKOTOPHIC 3aBUCHMOCTH MEXKy B3aMMOOODATHBIMU KBAZHTPYTI-
TIAMH ¥ JIYTIAMH C TOMOITBLI0 TPEoOPA30OBAHNS M30TONHH, JACTC KIACCA(MDUKAIAS KBASUTPYIIT U JIYI MO POJAM C
9TOM TOYKM 3pEHNs U JOKA3bIBACTCA DAL IPe/TIoXKeHui qononuaomux pesyiabrarsl A. Caga [1], 1. Creitna [15],
P. Apuu [4].

Kmouesoie caosa: Gunapuas onepalys, KBA3UrpyIia, Jyla, npasasd (JeBas) obparnas onepanus, CUCTeMa
OBPATUMBIX KBA3WTPYIIT, H30TOT.
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