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In the present paper some dependencies expressed by isotopy transformations between mutually invertible
quasigroups and loops are considered. Classi�cation of quasigroups and loops up to isotopy is given. Some
propositions complementing results of A. Sade [1], S.K. Stein [15], R. Artzy [4] are proved from this point of
view.

Key words: a binary operation, a quasigroup, a loop, a right (left) invertible operation, a system of
invertible quasigroups, isotopy

This article is an exact translation of the original article by V.D. Belousov from Russian into English
by the members of the Scienti�c Ukrainian Mathematical School �Multiary Invertible Functions� headed by
F.Sokhatsky, Doctor in Physics and Mathematics and with the help of the English reviewer Vira Obshanska.

1. Let Q be some �xed �nite or in�nite set and A be a binary operation de�ned on Q . The set Q with
the operation A is called a quasigroup if equations

A(a, x) = b, A(y, a) = b

are uniquely solvable for arbitrary a , b ∈ Q . To be short, an operation A also will be called a quasigroup. If
a quasigroup A has a unit, i.e., if A(a, e) = A(e, a) = a then A is called a loop.

Two invertible operations are connected with every quasigroup A : left invertible operation −1A de�ned
by the equation

A(y, a) = b, i.e., y =−1A(b, a)

and right invertible operation A−1 de�ned by the equation

A(a, x) = b, i.e., x = A−1(a, b).

It is easy to see that −1A and A−1 are also quasigroups then for each of them there exist invertible operations;
−1A has two invertible operations (−1A)−1 and −1(−1A) . But −1(−1A) = A , consequently we get one new
operation (−1A)−1 . In general, �ve invertible operations

A−1, −1A, −1(A−1), (−1A)−1, [−1(A−1)]−1

can be obtained. Indeed, following Stein [15] we denote some permutation of three elements a , b , c by
σ : σ(a, b, c) = (a′, b′, c′) . Then Aσ(a, b) = c is equivalent to the equality A(a′, b′) = c′ . For example, if
σ(a, b, c) = (c, a, b) then Aσ =−1 (A−1) because

−1(A−1)(a, b) = c � A(c, a) = b.

If we consider all possible permutations of three elements a , b , c we obtain �ve invertible operations listed
above and one more operation A . Note that

[−1(A−1)]−1 =−1 [(−1A)−1] = A∗,

where A∗ is the operation received from operation A by commutativity: A∗(a, b) = A(b, a) . Indeed,

[−1(A−1)]−1(a, b) = c � −1(A−1)(a, c) = b � A−1(b, c) = a � A(b, a) = c,

i.e., [−1(A−1)]−1 = A∗ . Equality −1[(−1A)−1] = A∗ can be proved similarly.
So, a system ΣA of six quasigroups:

ΣA = {A, −1A, A−1, −1(A−1), (−1A)−1, A∗}
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is connected with each quasigroup A which we will call a system of invertible quasigroups for A .
It is easy to see that, if B is one of the quasigroups of the system ΣA then ΣB = ΣA . For example, if

B =−1 (A−1) then B−1 = A∗ , −1B = A−1 etc.

2. Remember the de�nition of isotopy of two quasigroups. Let B and A be two quasigroups de�ned on
Q . The quasigroups B and A are isotopic if there exist three one-to-one mappings α , β , γ of Q onto itself
(permutations) such that equality

B(x; y) = γ−1A(αx, βy)

holds for all x , y of Q . We denote the ordered triple of the permutations (α, β, γ) by T and instead of the last
equality we write brie�y B = AT or B = A(α,β,γ) . If T = (α, β, γ) then we denote the triple (α−1, β−1, γ−1)
by T−1 . If S = (α1, β1, γ1) then we denote the triple (αα1, ββ1, γγ1) by TS . Then we have the following
propositions:

1) If B = AT then A = BT−1

.
2) If C = BT , B = AS then C = AST , i.e., (AS)T = AST .
Sometimes isotopy of quasigroups B and A will be denoted by B ∼ A .
Propositions 1) and 2) imply that isotopy relation is symmetric and transitive and because A = A(1,1,1)

( 1 is the unitary permutation of the set Q ) then A ∼ A . Therefore isotopy relation is an equivalence on the
set of all quasigroups de�ned on Q . The isomorphy of two quasigroups B and A is the particular case of
isotopy, namely if α = β = γ . In this case we write:

(α, α, α) = α and B = A(α,α,α) = Aα.

3. Consider a relationship which exists between invertible operations and isotopy. Let Aσ be an invertible
quasigroup of A . By T σ we denote the same permutation in the triple (α, β, γ) that σ permutates in the
triple (a, b, c) .

Lemma 1. (AT )σ = (Aσ)T
σ−1

.

We prove the lemma only for one of the cases, for example, when Aσ =−1 (A−1) , i.e., σ(a, b, c) = (c, a, b) .
If T = (α, β, γ) then T σ = (γ, α, β) . Let (AT )σ(a, b) = c then AT (c, a) = b or

γ−1Aσ(αc, βa) = b, Aσ(αc, βa) = γb,

wherefrom
Aσ(βa, γb) = αc, α−1Aσ(βa, γb) = c,

(Aσ)(α,β,γ)(a, b) = c, (Aσ)T
σ−1

(a, b) = c,

consequently

(Aσ)T
σ−1

= (AT )σ.

Corollary. If B ∼ A then Bσ ∼ Aσ .

Considering a system of invertible quasigroups ΣA we can notice that it is divided into subsystems of
quasigroups isotopic to each other. Such a partition can be of the following types:

I) All operations of ΣA are pairwise nonisotopic. We will name the number of equivalence classes of the
set ΣA an index of the operation A . Then the index of the operation A of this type equals 6 .

IIa) Let A−1 ∼ A . Then Corollary of Lemma 1 implies

−1(A−1) ∼ −1A and [−1(A−1)]−1 ∼ (−1A)−1 or A∗ ∼ (−1A)−1,

i.e., we have the following partition:

ΣA = {A,A−1}, {−1A, −1(A−1)}, {A∗, (−1A)−1}.

Similarly we obtain two more types:

IIb) ΣA = {A, −1A}, {A−1, (−1A)−1}, {A∗, −1(A−1)}.

IIc) ΣA = {A,A∗}, {−1A, (−1A)−1}, {A−1, −1(A−1)}.
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The operations of the types IIa, IIb, IIc have index 3 .
III) Let −1(A−1) ∼ A then

−1[−1(A−1)] ∼ −1A or A−1 ∼ −1A.

But −1(A−1) ∼ A implies
[−1(A−1)]−1 ∼ A−1, i.e., A∗ ∼ A−1.

So, in this case the operations A∗ , A−1 , −1A are isotopic to each other. It remains to consider the operation
(−1A)−1 . But A−1 ∼ −1A implies

(A−1)−1 ∼ (−1A)−1, i.e., A ∼ (−1A)−1.

Thus, the operations A , −1(A−1) , (−1A)−1 are isotopic to each other and we have the following partition:

ΣA = {A, −1(A−1), (−1A)−1}, {A−1, −1A,A∗}.

In this case the operation A has index 2 .
IV) If A ∼ A−1 ∼ −1A then the proved statements for the types IIa , IIb imply

A ∼ −1(A−1) and A ∼ (−1A)−1

and the proved assertion for type III implies that all operations from ΣA are isotopic to each other, i.e., the
operation A has index 1 . The obtained result can be formulated as the following theorem:

Theorem 1. There exists a bijection between all types of quasigroups A and partitions of a symmetric
group of degree 3 into the right cosets by its subgroups.

Indeed, it is easy to prove that (Aσ)τ = Aστ . For this purpose we must use the de�nition of the invertible
quasigroup Aσ with the help of the permutation σ of S3 . If Aσ ∼ A then the set of all such σ forms the
subgroup H of S3 . It implies that if Aσ ∼ Aτ then σ and τ belong to one right coset by α . Thus, there
exists a subgroup of the group S3 for every given type (and consequently some partition on the right coset of
its subgroup). Below we give these correspondences for each type:

I � {1}, IIa � {1, (23)}, IIb � {1, (13)},
IIc � {1, (12)}, III � {1, (123), (132)}, IV � S3.

Corollary 1. The type and consequently the index of the quasigroup A are invariant under isotopy.

The statement follows from the fact that if B ∼ A and Aσ ∼ A then Bσ ∼ B .
The index of the operation A is de�ned by the order of the permutation σ ̸= 1 for which Aσ ∼ A . It

implies

Corollary 2. The index of a quasigroup is invariant under the formation of invertible operations.

Indeed, let B = Aτ then Bτ−1

= A , wherefrom

Bτ−1σ = Aσ ∼ A, Bτ−1σ ∼ A, Bτ−1στ ∼ Aτ , Bτ−1στ ∼ B.

But τ−1στ has the same order as σ .

4. Every quasigroup A can be connected with the following groups of permutations of the set Q (see [1]):

1. a group LA of the left regular permutations:

LA = {λ; λA(x; y) = A(λx; y), ∀x, y ∈ Q}; (1)

2. a group RA of the right regular permutations:

RA = {ρ; ρA(x; y) = A(x; ρy), ∀x, y ∈ Q};

3. a group CA of the middle regular permutations: φ ∈ CA if there exists a permutation φ∗ , such that
A(φx; y) = A(x, φ∗y) for all x, y ∈ Q .
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The fact that LA , RA , CA are groups is proved in [1]. In addition, it is possible to consider the group S∗
A

consisting of all φ∗ . The listed groups of permutations play the same role for quasigroups, as nuclei do for loops
[5]. In [1] it is proved that if Q(A) is a loop then LA is isomorphic to the left nucleus Nλ and RA , CA are
isomorphic to the right and the middle nucleus respectively and LA1 = Nλ , where

LA1 = {λ1, λ ∈ LA},

1 is the unit of the loop etc. If λ ∈ LA then (1) implies A(λ,1,λ) = A . Thus, we have the particular case of
autotopism of the quasigroup A . It is well known [5] that a triple of permutations T = (α, β, γ) of the set Q

is called an autotopism of a quasigroup A if AT = A . From Lemma 1 it follows that Tσ−1

is an autotopism
of the invertible quasigroup Aσ . Using this assertion it is easy to prove the following lemma:

Lemma 2. Let A be a quasigroup then

L−1A = LA, R−1A ⊆ CA; LA−1 ⊆ CA, RA−1 = RA.

Indeed, let λ ∈ LA or AT = A , where T = (λ, 1, λ) . The operation −1A corresponds to the permutation
σ = (13) : −1A = A(13) . According to the previous remark

T σ−1

= T σ = T (13) = (λ, 1, λ) = T

is an autotopism of the quasigroup
Aσ =−1A, i.e., λ ∈ L−1A.

Thus, LA ⊆ L−1A . But this implies L−1A ⊆ LA because an arbitrary quasigroup can be substituted for A .
Consequently L−1A = LA . Let ρ ∈ R−1A . It means that C = (1, ρ, ρ) is an autotopism of the quasigroup
−1A = A(13) . But then S(13) = (ρ, ρ, 1) is an autotopism of the quasigroup A and consequently

A(ρx, ρy) = A(x, y) or A(ρx, y) = A(x, ρ−1y).

That is why, ρ ∈ CA , i.e., R−1A ⊆ LA . The second group of relationships of Lemma 2 can be proved in the
same way.

Corollary. Let
DA = {φ; A(φx, y) = A(x, φ−1y)}.

It is easy to see that DA is a group. We call it the group of central regular permutations. Obviously
DA ⊆ LA ∩ L∗

A . R−1A ⊆ DA arises from the foregoing. Reasoning in the invertible way, it easy to prove
the following

DA ⊆ R−1A, i.e., DA = R−1A.

Similarly we obtain LA−1 = DA .

Lemma 3.
1) If A has the left unit, then RA = L−1A .
3) If A has the right unit, then LA = CA−1 .

Let φ ∈ C−1A , it means that there exists a permutation φ∗ such that

−1A(φx, y) =−1A(x, φ∗y)

for all x, y ∈ Q .
Let −1A(φx, y) = z then φx = A(z, y) . Simultaneously we have x = A(z, φ∗y) then φA(z, φ∗y) = A(z, y) .

In this equality z and y can be any elements, in particular, let z = 1 then φφ∗y = y or φ∗ = φ−1 . That is
why we have

φA(z, φ−1y) = A(z, y) or φA(z, y) = A(z, φy), , i.e., φ ∈ RA

consequently C−1A ⊆ RA . From Lemma 2 RA ⊆ C−1A then RA = C−1A . The second statement of Lemma 3
can be proved similarly.

Remark. If A is a loop (with a unit 1 ) then: 1) A∗ is a loop; 2) A−1 and −1(A−1) have the left unit
1 ; 3) −1A and (−1A)−1 have the right unit 1 .
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Theorem 2. Let A be a quasigroup. Then the following relations hold for groups of regular permutations
of invertible operations:

1) L−1A = LA 2) L−1A = DA 3) LA∗ = RA 4) L(−1A)−1 = RA

L−1A = LA L−1A = LA L−1A = LA L−1A = LA

L−1A = LA L−1A = LA L−1A = LA L−1A = LA

5) L−1(A−1) = DA

R−1(A−1) = LA

D−1(A−1) = RA

If A is a loop then the relations

C−1A = C−1(A−1) = LA, CA−1 = C−1(A−1) = RA, CA∗ = C∗
A

are added.

``Proof.''}We prove the equalities of the group 1) . Lemma 2 and its corollaries imply the �rst and the
second equalities. Since A is an arbitrary operation then replacing A with −1A we obtain

R−1(−1A) = D−1A, i.e., D−1A = RA.

The second group of the equalities is proved in the same way. The rest of the equalities follow from the equalities
of 1) and 2) .

For example, R−1(A−1) = DA−1 = LA .
Relationships for the groups of the middle regular permutations are proved on Lemma 3 and on �ve groups

of equalities of Theorem 2.

5. If A is a loop then ΣA does not consist only of loops. So, if A(x, y) = xy is a group then
A−1(x, y) = x−1y and, in general, A−1 has no a right unit. That is why it is reasonable to consider such
isotopes of invertible operations for A which are also loops. We will do it in the following way. If A is a loop
with 1 then we consider a permutation I de�ned by A(x, Ix) = 1 , i.e., Ix is a right invertible of x .

We introduce the following two operations:

Aρ(x, y) = A−1(I−1x, y), Aλ(x, y) =−1A(x, Iy).

We show that Aρ and Aλ are loops with the same unit 1 . The de�nition of 1 implies I1 = 1 . We have seen
above, if A is a loop then A−1 has the left unit 1 . That is why

Aρ(1, y) = A−1(I−11, y) = A−1(1, y) = y.

Now let Aρ(x, 1) = x′ . Using the de�nition of the operation Aρ we conclude that A(I−1x, x′) = 1 , but
A(x, Ix) = 1 implies A(I−1x, x) = 1 , wherefrom x = x′ . Two loops Aρ and Aλ will be called a right loop
and a left loop for A respectively. Thus, we can associate the loops Aρ and Aλ with every loop A . Their
consideration is prompted by invertible operations for groups or more generally IP -loop [5]. The de�nitions of
Aρ and Aλ can be rewritten in the following way:

Aρ = (A−1)PA , Aλ = (−1A)SA ,

where PA = (I−1, 1, 1) , SA = (1, I, 1) and I = IA are de�ned by the equality A(x, IAx) = 1 . It is easy to
show that IAρ = IAλ = I−1 . Hence as a result we obtain relationships:

PAρ = PAλ = P−1
A , SAρ = SAλ = S−1

A .

As for the invertible quasigroups we can consider invertible loops for loops Aρ and Aλ etc., and we de�ne:
(Aρ)ρ = Aρ2

, (Aρ)λ = Aρλ etc.
For quasigroups we have seen that there exist only six invertible quasigroups (including the quasigroup

itself). To clarify analogical question for invertible loops, we give the following lemmas without proof:

Lemma 4. Aρ2

= A , Aλ2

= A .

Lemma 5. {
Aρλ = [−1(A−1)](1,I

−1,I−1),
Aρλ = [−1(A−1)](I,1,I);

{
Aρλρ = (A∗)I

−1

,
Aλρλ = (A∗)I .
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Thus, two previous lemmas imply that the system Σ0
A of invertible loops of a loop A consists of the operations:

A, Aρ, Aλ, Aρλ, Aλρ, Aρλρ, Aλρλ, Aρλρλ, Aλρλρ, . . . .

But Lemma 4 and Lemma 5 and the following lemma imply that there are only six loops with the precision up
to isomorphism.

Lemma 6. Aρα = Aαρ , Aλα = Aαλ , where α is an arbitrary permutation of the set Q .

Now consider the last two equalities of Lemma 5. From them we deduce the equality AρλρI = AλρλI−1

,
wherefrom Aλρλ = (Aρλρ)I

2

, i.e., Aλρλ and Aρλρ are isomorphic. That is why in the system Σ0
A all loops

of the form Aλρλρ . . . or Aρλρλ . . . having more than three letters in the upper index are isomorphic to the
following six loops:

A, Aρ, Aλ, Aρλ, Aλρ, Aρλρ.

6. We call a loop A a G -loop if it has the following property (G) : if a loop B is isotopic to A then B
is isomorphic to A . It is well known [6] that groups are G -loops, some Moufang loops are also G -loops. The
following theorem shows that the property (G) is invariant under the formation of invertible loops.

Theorem 3. If A is a G -loop then every operation Aσ of Σ0
A is a G -loop.

It is enough to consider the principal isotopes (B is principal isotope of A if B = A(α,β,1) ) because any
isotope of A is isomorphic to a principal isotopy [5]. If a loop B is principally isotopic to A : B = AT then the
isotopism T has a form: T = (R−1

k , L−1
ℓ , 1) where Rkx = A(x, k) , Lℓx = A(ℓ, x) [5]. In this case m = A(ℓ, k)

is a unit of the loop B . Let us formulate the lemma which we will accept without proof:

Lemma 7. (AT )ρ = (Aρ)T
ρ

, (AT )λ = (Aλ)T
λ

, where T ρ = (IV −1
m L−1

ℓ , 1, VaL
−1
ℓ ) , Tλ = (1, I−1VmR−1

k , R−1
k )

and the permutation Va is determined by the equality Vax = A−1(x, a) .

``Proofof Theorem 3.� It is enough to show that Aρ and Aλ are G -loops and to the other invertible
loops, the induction is applicable. If A is G -loop then for any elements k and l ∈ Q there exist a permutation
α of Q such that AT = Aα , T = (R−1

k , L−1
ℓ , 1) . Prove that Aρ is also a G -loop. For this purpose we calculate

(AT )ρ . Since AT = Aα then in view of Lemma 6 and Lemma 7 (AT )ρ = Aαρ or (Aρ)Tρ = Aρα . We rewrite
the last equation in a more detail way:

(Aρ)(IV
−1
m L−1

ℓ , 1, L−1
ℓ ) = Aρα,

wherefrom
(Aρ)(IV

−1
m , Lℓ, 1) = (Aρ)αLℓ . (2)

Let R̃ux = Aρ(x, u) , L̃vx = Aρ(v, x) . Calculating these two permutations. We have

R̃ux = A−1(I−1x, u) = VuI
−1x,

wherefrom R̃u = VuI
−1 . For L̃v we have L̃vx = A−1(I−1v, x) , wherefrom

A(I−1v, L̃vx) = x, LI−1vL̃v = 1

consequently L̃v = L−1
I−1v . From the equalities for R̃u and L̃v we �nd

IV −1
u = R̃−1

u , LI−1v = L̃−1
v or L̃v = L−1

I−1v,

therefore the equality (2) has the form

(Aρ)(R̃
−1
m ,L̃−1

Iℓ ,1) = (Aρ)αLℓ .

But m = A(ℓ, k) and if Iℓ = n then ℓ = I−1n , k = A−1(I−1n,m) , wherefrom

(Aρ)(R̃
−1
m ,L̃−1

n ,1) = (Aρ)αLℓ . (3)

Since m and n can be arbitrary elements from Q then (3) shows that a loop being principally isotopic
to the loop Aρ is isomorphic to Aρ , i.e., Aρ is also a G -loop. The fact that Aλ is a G -loop can be proved
analogically.
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ÂÇÀ�ÌÍÎ-ÎÁÎÐÎÒÍI ÊÂÀÇIÃÐÓÏÈ ÒÀ ËÓÏÈ

Áiëîóñîâ Â.Ä.
ÐÅÇÞÌÅ
Â öié ñòàòòi ðîçãëÿäàþòüñÿ äåÿêi çàëåæíîñòi ìiæ âçà¹ìíî-îáîðîòíèìè êâàçiãðóïàìè i ëóïàìè çà äîïî-

ìîãîþ ïåðåòâîðåííÿ içîòîïi¨, äàíà êëàñèôiêàöiÿ êâàçiãðóï i ëóï çà êëàñàìè i ç öi¹¨ òî÷êè çîðó äîâîäèòüñÿ
ðÿä òâåðäæåíü, ÿêi äîïîâíþþòü ðåçóëüòàòè À. Ñàäà [1], Ø. Ñòåéíà [15], Ð. Àðöi [4].

Êëþ÷îâi ñëîâà: áiíàðíà îïåðàöiÿ, êâàçiãðóïà, ëóïà, ïðàâà (ëiâà) îáîðîòíà îïåðàöiÿ, ñèñòåìà îáîðîòíèõ
êâàçiãðóï, içîòîï.

ÂÇÀÈÌÎÎÁÐÀÒÍÛÅ ÊÂÀÇÈÃÐÓÏÏÛ È ËÓÏÛ

Áåëîóñîâ Â.Ä.
ÐÅÇÞÌÅ
Â íàñòîÿùåé ñòàòüå ðàññìàòðèâàþòñÿ íåêîòîðûå çàâèñèìîñòè ìåæäó âçàèìîîáðàòíûìè êâàçèãðóï-

ïàìè è ëóïàìè ñ ïîìîùüþ ïðåîáðàçîâàíèÿ èçîòîïèè, äàåòñÿ êëàññèôèêàöèÿ êâàçèãðóïï è ëóï ïî ðîäàì ñ
ýòîé òî÷êè çðåíèÿ è äîêàçûâàåòñÿ ðÿä ïðåäëîæåíèé äîïîëíÿþùèõ ðåçóëüòàòû À. Ñàäà [1], Ø. Ñòåéíà [15],
Ð. Àðöè [4].

Êëþ÷åâûå ñëîâà: áèíàðíàÿ îïåðàöèÿ, êâàçèãðóïïà, ëóïà, ïðàâàÿ (ëåâàÿ) îáðàòíàÿ îïåðàöèÿ, ñèñòåìà
îáðàòèìûõ êâàçèãðóïï, èçîòîï.
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