УДК 539.3

Лила Д.М.

кандидат физико-математических наук, доцент кафедры математики и методики обучения математике, Черкасский национальный университет имени Богдана Хмельницкого

ЭКСЦЕНТРИЧНАЯ ФОРМА ПОТЕРИ УСТОЙЧИВОСТИ ВРАЩАЮЩЕГОСЯ СТУПЕНЧАТОГО ДИСКА

Предложен способ исследования методом малого параметра возможной потери устойчивости вращающегося ступенчатого кругового диска. Получено в первом приближении характеристическое уравнение относительно критического радиуса пластической зоны. Численно найдены значения критической угловой скорости вращения при различных параметрах диска.

Ключевые слова: упругопластическая задача, метод возмущения формы границы, вращающийся диск, потеря устойчивости, критическая угловая скорость

Введение

Важность построения аналитических методов исследования динамики малых возмущений [1-4] во вращающихся ступенчатых дисках [5-7] обсуждается в работе [8] в связи с решением упругопластической задачи [9, 10] для дисков переменной толщины. Здесь приводится и иллюстрируется примером общая схема определения критического радиуса пластической области и критической угловой скорости вращения при самоуравновешенной форме потери устойчивости [11-13] кругового кольцевого диска заданного профиля, нагруженного внешними и внутренними радиальными усилиями на контуре в срединной плоскости.

В работе [14] подчеркивается, что из многочисленных приближенных методов, предлагаемых для профилей общего вида, наиболее простым и наглядным является метод разложения диска произвольного профиля на частичные диски постоянной толщины. Поскольку самоуравновешенной формой потери устойчивости не исчерпываются естественные режимы скоростной динамики вращающихся дисков [15-18] из упругопластических материалов, в настоящей статье излагается способ определения положения упругопластической границы и соответствующей скорости вращения кольцевого ступенчатого диска, теряющего устойчивость по эксцентричной форме [19, 20]. Контурные радиальные нагрузки задаются так, как и в работах [5, 12, 19].

Постановка задачи

Рассмотрим потерю устойчивости вращающегося ступенчатого кольцевого диска вследствие принятия им в плоскости вращения формы, отличной от круговой. При этом диск будем считать близким к круговому и уравнение внешней границы в его срединной плоскости, являющейся плоскостью симметрии диска, с точностью до бесконечно малых первого порядка представим в виде

$$r = b + d\cos\theta, \quad d = \text{const},$$

или

$$o = 1 + \delta \cos \theta, \tag{1}$$

где b — внешний радиус невозмущенного диска (радиус контурной окружности), $\rho = r/b$ — безразмерный текущий радиус, δ — безразмерный малый параметр, θ — полярный угол (рис. 1). Внутренний радиус диска обозначим a, предел текучести материала — σ_s , модуль упругости — E, плотность — γ , коэффициент Пуассона — ν , угловую скорость вращения — ω , текущий радиус пластической зоны невозмущенного диска — r_0 . Предположим, что максимальная из толщин $2h_1, 2h_2, \ldots, 2h_{n_0}$ кольцевых зон диска радиусов $r_1, r_2, \ldots, r_{n_0} = b$ мала по сравнению с остальными его размерами. На основе этого предположения наличие сосредоточенных на внутреннем и внешнем контурах диска нагрузок будем считать результатом определенных усилий $p_i = p_{i0} + \tilde{p}_i$ и $p_e = p_{e0} + \tilde{p}_e$, действующих на диск в его срединной плоскости. Требуется для описываемой зависимостью (1) формы границы диска получить в первом приближении характеристическое уравнение для критического радиуса пластической зоны r_{0*} и определить соответствующую величину критической угловой скорости вращения ω_* . Для этого надлежит установить

Рис. 1: Эксцентричная форма потери устойчивости ступенчатого диска.

условие существования нетривиальных решений системы линейных однородных уравнений

$$\sigma_{rr} + \frac{d\sigma_{rr}^0}{dr}u = 0, \quad \sigma_{r\theta} - \frac{\sigma_{\theta\theta}^0 - \sigma_{rr}^0}{b}\frac{du}{d\theta} = 0, \quad r = b,$$

$$\sigma_{r\theta} = 0, \quad r = r_0,$$

относительно произвольных постоянных, входящих в выражения для компонент напряжений и перемещений σ_{rr} , $\sigma_{r\theta}$ и u, определяющих напряженно-деформированное состояние неподвижной упругой ступенчатой круговой кольцевой пластины, нагруженной в своей срединной плоскости системой самоуравновешенных контурных нагрузок

$$\sigma_{rr} = \overline{a}\cos\theta, \quad \sigma_{r\theta} = b\sin\theta, \quad r = b,$$

$$\sigma_{rr} = \underline{a}\cos\theta, \quad \sigma_{r\theta} = \underline{b}\sin\theta, \quad r = r_0,$$

$$b(\overline{a} - \overline{b}) - r_0(\underline{a} - \underline{b}) = 0. \ (*)$$

Указанным граничным и контурным условиям должны удовлетворять решения уравнений равновесия плоской задачи

$$\frac{\partial \sigma_{rr}}{\partial r} + \frac{1}{r} \frac{\partial \sigma_{r\theta}}{\partial \theta} + \frac{\sigma_{rr} - \sigma_{\theta\theta}}{r} = 0, \quad \frac{\partial \sigma_{r\theta}}{\partial r} + \frac{1}{r} \frac{\partial \sigma_{\theta\theta}}{\partial \theta} + 2 \frac{\sigma_{r\theta}}{r} = 0$$

и уравнений связи между напряжениями и перемещениями

$$E\frac{\partial u}{\partial r} = \sigma_{rr} - \nu\sigma_{\theta\theta}, \quad E\left(\frac{1}{r}\frac{\partial v}{\partial \theta} + \frac{u}{r}\right) = \sigma_{\theta\theta} - \nu\sigma_{rr},$$
$$\frac{E}{2(1+\nu)}\left(\frac{1}{r}\frac{\partial u}{\partial \theta} + \frac{\partial v}{\partial r} - \frac{v}{r}\right) = \sigma_{r\theta}.$$

Проверка условий возможна после определения из уравнения квазистатического равновесия

$$\frac{r}{y}\frac{d}{dr}(\sigma_{rr}y) + \sigma_{rr} - \sigma_{\theta\theta} + \gamma\omega^2 r^2 = 0$$

и уравнений связи

$$E\frac{du}{dr} = \sigma_{rr} - \nu\sigma_{\theta\theta}, \quad E\frac{u}{r} = \sigma_{\theta\theta} - \nu\sigma_{rr}$$

в упругой зоне и условия текучести

$$\sigma_{\theta\theta} = \sigma_s$$

в пластической зоне невозмущенного напряженного состояния (обозначено верхним индексом 0) вращающегося диска произвольного (ступенчатого) профиля y(r).

Замечание 1. Равенство (*) — это условие равновесия кольцевой пластинки (рис. 2) как целого:

$$\sum_{i=1}^{4} X_i = 0, \quad \sum_{i=1}^{4} Y_i = 0, \quad \sum_{i=1}^{4} M_i = 0,$$

где

$$\begin{split} X_1 &= b \int_{0}^{2\pi} \sigma_{rr}(b) \cos \theta d\theta = \pi b \overline{a}, \quad X_2 = -b \int_{0}^{2\pi} \sigma_{r\theta}(b) \sin \theta d\theta = -\pi b \overline{b}, \\ X_3 &= -r_0 \int_{0}^{2\pi} \sigma_{rr}(r_0) \cos \theta d\theta = -\pi r_0 \underline{a}, \quad X_4 = r_0 \int_{0}^{2\pi} \sigma_{r\theta}(r_0) \sin \theta d\theta = \pi r_0 \underline{b}, \\ Y_1 &= b \int_{0}^{2\pi} \sigma_{rr}(b) \sin \theta d\theta = 0, \quad Y_2 = b \int_{0}^{2\pi} \sigma_{r\theta}(b) \cos \theta d\theta = 0, \\ Y_3 &= -r_0 \int_{0}^{2\pi} \sigma_{rr}(r_0) \sin \theta d\theta = 0, \quad Y_4 = -r_0 \int_{0}^{2\pi} \sigma_{r\theta}(r_0) \cos \theta d\theta = 0, \\ M_1 &= M(\sigma_{rr}(b)) = 0, \quad M_2 = M(\sigma_{r\theta}(b)) = b^2 \int_{0}^{2\pi} \sigma_{r\theta}(b) d\theta = 0, \\ M_3 &= M(\sigma_{rr}(r_0)) = 0, \quad M_4 = M(\sigma_{r\theta}(r_0)) = -r_0^2 \int_{0}^{2\pi} \sigma_{r\theta}(r_0) d\theta = 0. \end{split}$$

Рис. 2: К условию равновесия кольцевой пластинки.

Вспомогательный результат

Невозмущенное плоское напряженное состояние ступенчатого кругового кольцевого диска (все напряжения отнесены к σ_s ; верхний индекс p указывает на пластическую зону, e — на упругую зону) определяется следующим образом [5, 8]:

$$\sigma_{rr}^{0p} = \begin{cases} 1 - \frac{\sigma}{3\sigma_s}\rho^2 + \frac{C_1}{\rho}, & \rho \in [\beta, \rho_1), \\ 1 - \frac{\sigma}{3\sigma_s}\rho^2 + \frac{C_2}{\rho}, & \rho \in (\rho_1, \rho_2), \\ \dots \\ 1 - \frac{\sigma}{3\sigma_s}\rho^2 + \frac{C_j}{\rho}, & \rho \in (\rho_{j-1}, \beta_0), \end{cases}$$
(2)

$$\sigma_{rr}^{0e} = \begin{cases} \tilde{C}_{1,j} + \tilde{C}_{2,j}\rho^{-2} - \tilde{\alpha}\rho^2, & \rho \in (\beta_0, \rho_j), \\ \tilde{C}_{1,j+1} + \tilde{C}_{2,j+1}\rho^{-2} - \tilde{\alpha}\rho^2, & \rho \in (\rho_j, \rho_{j+1}), \\ \dots \\ \tilde{C}_{1,n_2} + \tilde{C}_{2,n_2}\rho^{-2} - \tilde{\alpha}\rho^2, & \rho \in (\rho_{n_2-1}, \rho_{n_2}]. \end{cases}$$
(3)

$$\sigma_{\theta\theta}^{0e} = \begin{cases} \tilde{C}_{1,n_0} + \tilde{C}_{2,n_0}\rho^{-2} - \tilde{\beta}\rho^2, & \rho \in (\beta_0, \rho_j), \\ \tilde{C}_{1,j+1} - \tilde{C}_{2,j+1}\rho^{-2} - \tilde{\beta}\rho^2, & \rho \in (\rho_j, \rho_{j+1}), \\ \dots \\ \tilde{C}_{1,n_0} - \tilde{C}_{2,n_0}\rho^{-2} - \tilde{\beta}\rho^2, & \rho \in (\rho_{n_0-1}, \rho_{n_0}], \end{cases}$$
(4)

где $\beta = a/b$, $\beta_0 = r_0/b$, $\rho_1 = r_1/b, \dots, \rho_{n_0} = r_{n_0}/b$, $\tilde{\alpha} = \sigma(\nu+3)/(8\sigma_s)$, $\tilde{\beta} = \sigma(3\nu+1)/(8\sigma_s)$, а константы C_1, \dots, C_j и $\tilde{C}_{1,j}, \tilde{C}_{2,j}, \dots, \tilde{C}_{1,n_0}, \tilde{C}_{2,n_0}$ определяются как решения систем уравнений

$$-\frac{p_i}{\sigma_s} = 1 - \frac{\sigma}{3\sigma_s}\beta^2 + \frac{C_1}{\beta},$$

$$h_1\left(1 - \frac{\sigma}{3\sigma_s}\rho_1^2 + \frac{C_1}{\rho_1}\right) = h_2\left(1 - \frac{\sigma}{3\sigma_s}\rho_1^2 + \frac{C_2}{\rho_1}\right),$$

$$\dots$$

$$h_{j-1}\left(1 - \frac{\sigma}{3\sigma_s}\rho_{j-1}^2 + \frac{C_{j-1}}{\rho_{j-1}}\right) = h_j\left(1 - \frac{\sigma}{3\sigma_s}\rho_{j-1}^2 + \frac{C_j}{\rho_{j-1}}\right)$$

$$\widetilde{C}_{1,j} + \widetilde{C}_{2,j}x_j = s_j^-, \quad \widetilde{C}_{1,j} - \widetilde{C}_{2,j}x_j = t_j^-, \\
\widetilde{C}_{1,j+1} + \widetilde{C}_{2,j+1}x_{j+1} = s_{j+1}^-, \quad \widetilde{C}_{1,j+1} - \widetilde{C}_{2,j+1}x_{j+1} = t_{j+1}^-, \\
\dots \\
\widetilde{C}_{1,n_0} + \widetilde{C}_{2,n_0} = s_{n_0}, \quad \widetilde{C}_{1,n_0} - \widetilde{C}_{2,n_0} = t_{n_0}$$

соответственно. Здесь $x_j = 1/\rho_j^2, \dots, x_{n_0-1} = 1/\rho_{n_0-1}^2$,

$$\begin{split} \frac{\sigma}{\sigma_s} &= \frac{\omega^2}{q^2} = \frac{8}{\nu+3} \frac{\frac{p_e}{\sigma_s} - \left(RA_{n_0} - R^*B_{n_0}\right)\frac{p_i}{\sigma_s} - (SA_{n_0} - S^*B_{n_0})}{QA_{n_0} - Q^*B_{n_0} + D_{n_0} - 1}, \quad q = \frac{1}{b}\sqrt{\frac{\sigma_s}{\gamma}}, \\ Q &= d_0 \frac{(3\nu+1)\beta_0^2 + 24\delta_2\beta_0^{-1}}{3(\nu+3)} - f_0 \frac{(3\nu+1)\beta_0^2}{\nu+3}, \quad R = d_0\delta_1\beta_0^{-1}, \quad S = d_0\delta_3\beta_0^{-1} + 1, \\ Q^* &= -f_0 \frac{(3\nu+1)\beta_0^2 + 24\delta_2\beta_0^{-1}}{3(\nu+3)} + d_0 \frac{(3\nu+1)\beta_0^2}{\nu+3}, \quad R^* = -f_0\delta_1\beta_0^{-1}, \quad S^* = -f_0\delta_3\beta_0^{-1} + 1, \end{split}$$

 $d_{0} = \frac{x_{0} + x_{j}}{2x_{0}}, \ f_{0} = \frac{x_{j} - x_{0}}{2x_{0}}, \ x_{0} = \frac{1}{\beta_{0}^{2}}, \ \delta_{1} = -\frac{h_{1}}{h_{j}}\beta, \ \delta_{2} = -\frac{1}{3h_{j}}\sum_{k=1}^{j}(h_{k-1} - h_{k})\rho_{k-1}^{3}, \ \delta_{3} = \frac{1}{h_{j}}\sum_{k=1}^{j}(h_{k-1} - h_{k})\rho_{k-1}, \ h_{0} = 0, \ \rho_{0} = \beta, \ \text{тогда как } s_{j}^{-}, t_{j}^{-}, \ \dots, \ s_{n_{0}-1}^{-}, \ t_{n_{0}-1}^{-}, \ s_{n_{0}}, t_{n_{0}} \ \text{ и } A_{n_{0}}, \ B_{n_{0}}, \ D_{n_{0}} \ \text{определяются из рекуррентных соотношений}$

$$s_{j}^{-} = Q\tilde{\alpha} + R_{\sigma_{s}}^{p_{i}} + S, \quad t_{j}^{-} = Q^{*}\tilde{\alpha} + R^{*}\frac{p_{i}}{\sigma_{s}} + S^{*},$$

$$s_{j+1}^{-} = A_{j+1}s_{j}^{-} - B_{j+1}t_{j}^{-} + C_{j+1}, \quad t_{j+1}^{-} = A_{j+1}^{*}s_{j}^{-} - B_{j+1}^{*}t_{j}^{-} + C_{j+1}^{*},$$

$$s_{j+2}^{-} = A_{j+2}s_{j}^{-} - B_{j+2}t_{j}^{-} + C_{j+2}, \quad t_{j+2}^{-} = A_{j+2}^{*}s_{j}^{-} - B_{j+2}^{*}t_{j}^{-} + C_{j+2}^{*},$$

$$\dots$$

$$s_{n_{0}} = A_{n_{0}}s_{j}^{-} - B_{n_{0}}t_{j}^{-} + C_{n_{0}}, \quad t_{n_{0}} = A_{n_{0}}^{*}s_{j}^{-} - B_{n_{0}}^{*}t_{j}^{-} + C_{n_{0}}^{*},$$

где

$$\begin{split} A_{j+1} &= d_j a_j + \nu f_j c_j, \quad B_{j+1} = f_j, \quad C_{j+1} = d_j b_j - \nu f_j b_j, \\ A_{j+1}^* &= -f_j a_j - \nu d_j c_j, \quad B_{j+1}^* = -d_j, \quad C_{j+1}^* = -f_j b_j + \nu d_j b_j, \\ A_{j+2} &= d_{j+1} a_{j+1} A_{j+1} - f_{j+1} (-\nu c_{j+1} A_{j+1} + A_{j+1}^*), \\ B_{j+2} &= d_{j+1} a_{j+1} B_{j+1} - f_{j+1} (-\nu c_{j+1} A_{j+1} + B_{j+1}^*), \\ C_{j+2} &= d_{j+1} (a_{j+1} C_{j+1} + b_{j+1}) - f_{j+1} (-\nu c_{j+1} C_{j+1} + C_{j+1}^* + \nu b_{j+1}), \\ A_{j+2}^* &= -f_{j+1} a_{j+1} A_{j+1} + d_{j+1} (-\nu c_{j+1} A_{j+1} + A_{j+1}^*), \\ B_{j+2}^* &= -f_{j+1} a_{j+1} B_{j+1} + d_{j+1} (-\nu c_{j+1} B_{j+1} + B_{j+1}^*), \\ B_{j+2}^* &= -f_{j+1} a_{j+1} B_{j+1} + d_{j+1} (-\nu c_{j+1} B_{j+1} + B_{j+1}^*), \\ C_{j+2}^* &= -f_{j+1} (a_{j+1} C_{j+1} + b_{j+1}) + d_{j+1} (-\nu c_{n_0-1} A_{n_0-1} + A_{n_0-1}^*), \\ B_{n_0} &= d_{n_0-1} a_{n_0-1} A_{n_0-1} - f_{n_0-1} (-\nu c_{n_0-1} B_{n_0-1} + B_{n_0-1}^*), \\ B_{n_0} &= d_{n_0-1} a_{n_0-1} B_{n_0-1} - f_{n_0-1} (-\nu c_{n_0-1} B_{n_0-1} + B_{n_0-1}^*), \\ B_{n_0}^* &= -f_{n_0-1} a_{n_0-1} A_{n_0-1} + d_{n_0-1} (-\nu c_{n_0-1} A_{n_0-1} + A_{n_0-1}^*), \\ B_{n_0}^* &= -f_{n_0-1} a_{n_0-1} B_{n_0-1} + d_{n_0-1} (-\nu c_{n_0-1} B_{n_0-1} + B_{n_0-1}^*), \\ B_{n_0}^* &= -f_{n_0-1} a_{n_0-1} B_{n_0-1} + d_{n_0-1} (-\nu c_{n_0-1} B_{n_0-1} + B_{n_0-1}^*), \\ C_{n_0}^* &= -f_{n_0-1} a_{n_0-1} B_{n_0-1} + d_{n_0-1} (-\nu c_{n_0-1} B_{n_0-1} + B_{n_0-1}^*), \\ C_{n_0}^* &= -f_{n_0-1} (a_{n_0-1} C_{n_0-1} + b_{n_0-1}) + d_{n_0-1} (-\nu c_{n_0-1} B_{n_0-1} + B_{n_0-1}^*), \\ C_{n_0}^* &= -f_{n_0-1} (a_{n_0-1} C_{n_0-1} + b_{n_0-1}) + d_{n_0-1} (-\nu c_{n_0-1} B_{n_0-1} + B_{n_0-1}^*), \\ C_{n_0}^* &= -f_{n_0-1} (a_{n_0-1} C_{n_0-1} + g_{j^*-1}) - f_{j^*-1} (-\nu c_{j^*-1} D_{j^*-1} + D_{j^*-1}^* + \nu g_{j^*-1}), \\ f^* &= j + 2, \dots, n_0, \\ B_{j^*} &= j + 2, \dots, n_0, \\ a_k &= \frac{h_k}{h_{k+1}}, \quad b_k = \frac{h_{k+1} - h_k}{h_{k+1}} \frac{\tilde{a}}{x_k}, \quad c_k &= \frac{h_{k+1} - h_k}{h_{k+1}}, \\ d_k &= \frac{x_k + x_{k+1}}{2x_k}, \quad f_k &= \frac{x_{k+1} - x_k}{2x_k}, \quad g_k &= \frac{h_{k+1} - h_k}{h_{k+1}} \frac{1}{x_k}, \quad k = j, \dots, n_0 - 1. \end{cases}$$

Зависимости (2-4) с учетом соотношения $\sigma_{\theta\theta}^{0p} = 1$ задают нулевое приближение к решению задачи о пластическом равновесии, определяющему положение упругопластической границы. При этом

$$A_{1} = \frac{d\sigma_{rr}^{0e}(1)}{d\rho} = \left(A_{n_{0}}^{*}Q - B_{n_{0}}^{*}Q^{*} - 3\right)\widetilde{\alpha} + \left(A_{n_{0}}^{*}R - B_{n_{0}}^{*}R^{*}\right)\frac{p_{i}}{\sigma_{s}} - \frac{p_{e}}{\sigma_{s}} + A_{n_{0}}^{*}S - B_{n_{0}}^{*}S^{*} + C_{n_{0}}^{*},$$
(5)

$$A_2 = \sigma_{\theta\theta}^{0e}(1) - \sigma_{\rho\rho}^{0e}(1) = A_1 + 3\widetilde{\alpha} - \widetilde{\beta}, \tag{6}$$

где в случае $\varkappa_i \neq 0$

$$\begin{split} \frac{p_i}{\sigma_s} &= \xi(\beta_0) = \frac{\varepsilon_i \tau + \frac{8\varkappa_i (\beta^{-1} - \beta^2)}{\nu + 3} \left(\varepsilon_e - \mu \varepsilon_i - \left[SA_{n_0} - S^*B_{n_0}\right]\right)}{\tau - \frac{8\varkappa_i (\beta^{-1} - \beta^2)}{\nu + 3} \left(\mu - \left[RA_{n_0} - R^*B_{n_0}\right]\right)}, \\ 0 &\leqslant \varepsilon_i < 1, \quad 0 \leqslant \varepsilon_e < 1, \quad \mu = \frac{\varkappa_e}{\varkappa_i} \frac{\overline{\gamma}}{\gamma} \frac{\varphi^3 - 1}{\beta^{-1} - \beta^2}, \quad \varkappa_e \geqslant 0, \quad \overline{\gamma} > 0, \quad \varphi > 1, \\ \tau = QA_{n_0} - Q^*B_{n_0} + D_{n_0} - 1, \\ \frac{p_e}{\sigma_s} = \varepsilon_e + \mu \left(\frac{p_i}{\sigma_s} - \varepsilon_i\right), \end{split}$$

а в случае $\varkappa_e \neq 0$ —

$$\frac{\underline{p}_{e}}{\sigma_{s}} = \eta(\beta_{0}) = \frac{\varepsilon_{e}\tau - \frac{8\varkappa_{e}(\varphi^{3}-1)}{\nu+3}\frac{\overline{\gamma}}{\gamma}[(\varepsilon_{i}-\mu^{-1}\varepsilon_{e})(RA_{n_{0}}-R^{*}B_{n_{0}}) + (SA_{n_{0}}-S^{*}B_{n_{0}})]}{\tau - \frac{8\varkappa_{e}(\varphi^{3}-1)}{\nu+3}\frac{\overline{\gamma}}{\gamma}[1-\mu^{-1}(RA_{n_{0}}-R^{*}B_{n_{0}})]},$$
$$\frac{\underline{p}_{i}}{\sigma_{s}} = \varepsilon_{i} + \mu^{-1}\left(\frac{p_{e}}{\sigma_{s}} - \varepsilon_{e}\right).$$

Основной результат

Согласно принципу наложения [21], отнесенные к σ_s возмущения первого порядка малости $\sigma_{rr}^{\prime e}$, $\sigma_{\theta\theta}^{\prime e}$, $\sigma_{r\theta}^{\prime e}$ соответствующих компонент напряжения и отнесенные к *b* возмущения радиального $u^{\prime e}$ и

тангенциального v'^e смещений в первом приближении для плоского кольцевого диска (диска постоянной толщины) $\beta_0 \leq \rho \leq 1$ имеют в общем случае следующий вид:

$$\begin{aligned}
\sigma_{rr}^{\prime e} &= \left[a_{I}^{\prime}(\beta_{0},\rho)\overline{a} + a_{II}^{\prime}(\beta_{0},\rho)\underline{a} + a_{III}^{\prime}(\beta_{0},\rho)\overline{b} \right] \cos\theta, \\
\sigma_{\theta\theta}^{\prime e} &= \left[b_{I}^{\prime}(\beta_{0},\rho)\overline{a} + b_{II}^{\prime}(\beta_{0},\rho)\underline{a} + b_{III}^{\prime}(\beta_{0},\rho)\overline{b} \right] \cos\theta, \\
\sigma_{r\theta}^{\prime e} &= \left[c_{I}^{\prime}(\beta_{0},\rho)\overline{a} + c_{II}^{\prime}(\beta_{0},\rho)\underline{a} + c_{III}^{\prime}(\beta_{0},\rho)\overline{b} \right] \sin\theta, \\
u^{\prime e} &= \frac{\sigma_{s}}{E} \left[d_{I}^{\prime}(\beta_{0},\rho)\overline{a} + d_{II}^{\prime}(\beta_{0},\rho)\underline{a} + d_{III}^{\prime}(\beta_{0},\rho)\overline{b} \right] \cos\theta, \\
v^{\prime e} &= \frac{\sigma_{s}}{E} \left[e_{I}^{\prime}(\beta_{0},\rho)\overline{a} + e_{II}^{\prime}(\beta_{0},\rho)\underline{a} + e_{III}^{\prime}(\beta_{0},\rho)\overline{b} \right] \sin\theta.
\end{aligned}$$
(7)

Здесь известные функции

$$a_{I}'(\beta_{0},\rho) = \rho - \frac{3+\nu}{4(1+\beta_{0}^{2})} \left(\rho - \frac{1+\beta_{0}^{2}}{\rho} + \frac{\beta_{0}^{2}}{\rho^{3}}\right) + \frac{\beta_{0}^{4}}{1-\beta_{0}^{4}} \left(\rho - \frac{1}{\rho^{3}}\right),$$

$$a_{II}'(\beta_{0},\rho) = -\frac{\beta_{0}^{3}}{1-\beta_{0}^{4}} \left(\rho - \frac{1}{\rho^{3}}\right), \quad a_{III}'(\beta_{0},\rho) = \frac{3+\nu}{4(1+\beta_{0}^{2})} \left(\rho - \frac{1+\beta_{0}^{2}}{\rho} + \frac{\beta_{0}^{2}}{\rho^{3}}\right),$$

$$\begin{split} b_I'(\beta_0,\rho) &= 3\rho - \frac{3+\nu}{4(1+\beta_0^2)} \left(3\rho + \frac{(1-\nu)(1+\beta_0^2)}{(3+\nu)\rho} - \frac{\beta_0^2}{\rho^3} \right) + \frac{\beta_0^4}{1-\beta_0^4} \left(3\rho + \frac{1}{\rho^3} \right), \\ b_{II}'(\beta_0,\rho) &= -\frac{\beta_0^3}{1-\beta_0^4} \left(3\rho + \frac{1}{\rho^3} \right), \quad b_{III}'(\beta_0,\rho) &= \frac{3+\nu}{4(1+\beta_0^2)} \left(3\rho + \frac{(1-\nu)(1+\beta_0^2)}{(3+\nu)\rho} - \frac{\beta_0^2}{\rho^3} \right), \\ c_I'(\beta_0,\rho) &= \rho - \frac{3+\nu}{4(1+\beta_0^2)} \left(\rho + \frac{(1-\nu)(1+\beta_0^2)}{(3+\nu)\rho} + \frac{\beta_0^2}{\rho^3} \right) + \frac{\beta_0^4}{1-\beta_0^4} \left(\rho - \frac{1}{\rho^3} \right), \\ c_{II}'(\beta_0,\rho) &= -\frac{\beta_0^3}{1-\beta_0^4} \left(\rho - \frac{1}{\rho^3} \right), \quad c_{III}'(\beta_0,\rho) &= \frac{3+\nu}{4(1+\beta_0^2)} \left(\rho + \frac{(1-\nu)(1+\beta_0^2)}{(3+\nu)\rho} + \frac{\beta_0^2}{\rho^3} \right), \\ d_I'(\beta_0,\rho) &= \frac{1}{4} (1+\nu)(3-\nu) \ln \rho + (1-3\nu) \left(\frac{1}{2} - \frac{3+\nu}{8(1+\beta_0^2)} + \frac{\beta_0^4}{2(1-\beta_0^4)} \right) \rho^2 + \\ &+ (1+\nu) \left(\frac{(3+\nu)\beta_0^2}{8(1+\beta_0^2)} + \frac{\beta_0^4}{2(1-\beta_0^4)} \right) \frac{1}{\rho^2}, \\ d_{III}'(\beta_0,\rho) &= -\frac{1}{4} (1+\nu)(3-\nu) \ln \rho + \frac{(1-3\nu)(3+\nu)\rho^2}{8(1+\beta_0^2)} - \frac{(1+\nu)(3+\nu)\beta_0^2}{8(1+\beta_0^2)\rho^2}, \\ e_I'(\beta_0,\rho) &= -\frac{1}{4} (1+\nu)(3-\nu) \left(\ln \rho + \frac{1+\nu}{3-\nu} \right) + (5+\nu) \left(\frac{1}{2} - \frac{3+\nu}{8(1+\beta_0^2)} + \frac{\beta_0^4}{2(1-\beta_0^4)} \right) \rho^2 + \\ &+ (1+\nu) \left(\frac{(3+\nu)\beta_0^2}{8(1+\beta_0^2)} + \frac{\beta_0^4}{2(1-\beta_0^4)} \right) \frac{1}{\rho^2}, \\ e_{II}'(\beta_0,\rho) &= -\frac{\beta_0^3}{2(1-\beta_0^4)} \left((5+\nu)\rho^2 + \frac{1+\nu}{\rho^2} \right), \\ e_{III}'(\beta_0,\rho) &= \frac{1}{4} (1+\nu)(3-\nu) \left(\ln \rho + \frac{1+\nu}{3-\nu} \right) + \frac{(5+\nu)(3+\nu)\rho^2}{8(1+\beta_0^2)} - \frac{(1+\nu)(3+\nu)\beta_0^2}{8(1+\beta_0^2)} \right) \rho^2 + \\ &+ (1+\nu) \left(\frac{(3+\nu)\beta_0^2}{8(1+\beta_0^2)} + \frac{\beta_0^4}{2(1-\beta_0^4)} \right) \frac{1}{\rho^2}, \\ e_{III}'(\beta_0,\rho) &= -\frac{\beta_0^3}{4} \left((5+\nu)\rho^2 + \frac{1+\nu}{\rho^2} \right), \end{aligned}$$

отображают влияние сосредоточенных на внешнем контуре $\rho = 1$ и внутреннем контуре $\rho = \beta_0$ периодических нагрузок $\sigma_{rr}^{\prime e} = \overline{a} \cos \theta$, $\sigma_{r\theta}^{\prime e} = \overline{b} \sin \theta$ и $\sigma_{rr}^{\prime e} = \underline{a} \cos \theta$, $\sigma_{r\theta}^{\prime e} = \underline{b} \sin \theta = \left(\underline{a} - \frac{\overline{a} - \overline{b}}{\beta_0}\right) \sin \theta$ соответственно. В случае диска переменной толщины приведенные зависимости следует переопределить для каждого частичного диска, используя условия в точке разрыва — непрерывность радиального $h\sigma_{rr}^{\prime e}$ и тангенциального $h\sigma_{r\theta}^{\prime e}$ усилий, а также радиального и тангенциального смещений [14].

Поскольку в крайне
й n_0 -ой кольцевой секции $\rho_{n_0-1} < \rho \leqslant 1$

$$\begin{aligned}
\sigma_{rr}^{\prime e} &= \left[a_{I}(\rho_{n_{0}-1},\rho)a_{n_{0}} + a_{II}(\rho_{n_{0}-1},\rho)a_{n_{0}-1} + a_{III}(\rho_{n_{0}-1},\rho)b_{n_{0}} + b_{n_{0}-1}\right]\cos\theta, \\
\sigma_{\theta\theta}^{\prime e} &= \left[b_{I}(\rho_{n_{0}-1},\rho)a_{n_{0}} + b_{II}(\rho_{n_{0}-1},\rho)a_{n_{0}-1} + b_{III}(\rho_{n_{0}-1},\rho)b_{n_{0}} + b_{n_{0}-1}\right]\cos\theta, \\
\sigma_{r\theta}^{\prime e} &= \left[c_{I}(\rho_{n_{0}-1},\rho)a_{n_{0}} + c_{II}(\rho_{n_{0}-1},\rho)a_{n_{0}-1} + c_{III}(\rho_{n_{0}-1},\rho)b_{n_{0}} + b_{n_{0}-1}\right]\sin\theta, \\
u^{\prime e} &= \frac{\sigma_{s}}{E}\left[d_{I}(\rho_{n_{0}-1},\rho)a_{n_{0}} + d_{II}(\rho_{n_{0}-1},\rho)a_{n_{0}-1} + d_{III}(\rho_{n_{0}-1},\rho)b_{n_{0}} + b_{n_{0}-1}\right]\cos\theta, \\
v^{\prime e} &= \frac{\sigma_{s}}{E}\left[e_{I}(\rho_{n_{0}-1},\rho)a_{n_{0}} + e_{II}(\rho_{n_{0}-1},\rho)a_{n_{0}-1} + e_{III}(\rho_{n_{0}-1},\rho)b_{n_{0}} + b_{n_{0}-1}\right]\sin\theta,
\end{aligned}$$
(8)

где

$$a_{I}(\rho_{n_{0}-1},\rho) = a'_{I}(\rho_{n_{0}-1},\rho) + \frac{1}{\rho_{n_{0}-1}}, \quad a_{II}(\rho_{n_{0}-1},\rho) = a'_{II}(\rho_{n_{0}-1},\rho) - 1,$$
$$a_{III}(\rho_{n_{0}-1},\rho) = a'_{III}(\rho_{n_{0}-1},\rho) - \frac{1}{\rho_{n_{0}-1}},$$

$$e_{I}(\rho_{n_{0}-1},\rho) = e'_{I}(\rho_{n_{0}-1},\rho) + \frac{1}{\rho_{n_{0}-1}}, \quad e_{II}(\rho_{n_{0}-1},\rho) = e'_{II}(\rho_{n_{0}-1},\rho) - 1,$$
$$e_{III}(\rho_{n_{0}-1},\rho) = e'_{III}(\rho_{n_{0}-1},\rho) - \frac{1}{\rho_{n_{0}-1}},$$

на основе непрерывности радиального и тангенциального усилий действующие на внешнем контуре $\rho = \rho_{n_0-1}$ следующей кольцевой секции $\rho_{n_0-2} < \rho < \rho_{n_0-1}$ соответствующие нагрузки получаем в виде

$$\sigma_{rr}^{\prime e} = \frac{h_{n_0}}{h_{n_0-1}} a_{n_0-1} \cos \theta, \quad \sigma_{r\theta}^{\prime e} = \frac{h_{n_0}}{h_{n_0-1}} b_{n_0-1} \sin \theta.$$

Принимая

$$\sigma_{rr}^{\prime e} = a_{n_0-2}\cos\theta, \quad \sigma_{\rho\theta}^{\prime e} = b_{n_0-2}\sin\theta$$

на внутреннем контуре $\rho = \rho_{n_0-2}$ этой секции, определяем согласно (7), (8) напряженное и деформированное состояние в ней:

$$\begin{aligned} \sigma_{rr}^{\prime e} &= \left[a_{I} \left(\frac{\rho_{n_{0}-2}}{\rho_{n_{0}-1}}, \frac{\rho}{\rho_{n_{0}-1}} \right) \frac{h_{n_{0}}}{h_{n_{0}-1}} a_{n_{0}-1} + a_{II} \left(\frac{\rho_{n_{0}-2}}{\rho_{n_{0}-1}}, \frac{\rho}{\rho_{n_{0}-1}} \right) a_{n_{0}-2} + \\ &+ a_{III} \left(\frac{\rho_{n_{0}-2}}{\rho_{n_{0}-1}}, \frac{\rho}{\rho_{n_{0}-1}} \right) \frac{h_{n_{0}}}{h_{n_{0}-1}} b_{n_{0}-1} + b_{n_{0}-2} \right] \cos \theta, \\ \sigma_{\theta\theta}^{\prime e} &= \left[b_{I} \left(\frac{\rho_{n_{0}-2}}{\rho_{n_{0}-1}}, \frac{\rho}{\rho_{n_{0}-1}} \right) \frac{h_{n_{0}}}{h_{n_{0}-1}} a_{n_{0}-1} + b_{II} \left(\frac{\rho_{n_{0}-2}}{\rho_{n_{0}-1}}, \frac{\rho}{\rho_{n_{0}-1}} \right) a_{n_{0}-2} + \\ &+ b_{III} \left(\frac{\rho_{n_{0}-2}}{\rho_{n_{0}-1}}, \frac{\rho}{\rho_{n_{0}-1}} \right) \frac{h_{n_{0}}}{h_{n_{0}-1}} b_{n_{0}-1} + b_{n_{0}-2} \right] \cos \theta, \\ \sigma_{r\theta}^{\prime e} &= \left[c_{I} \left(\frac{\rho_{n_{0}-2}}{\rho_{n_{0}-1}}, \frac{\rho}{\rho_{n_{0}-1}} \right) \frac{h_{n_{0}}}{h_{n_{0}-1}} a_{n_{0}-1} + c_{II} \left(\frac{\rho_{n_{0}-2}}{\rho_{n_{0}-1}}, \frac{\rho}{\rho_{n_{0}-1}} \right) a_{n_{0}-2} + \\ &+ c_{IIII} \left(\frac{\rho_{n_{0}-2}}{\rho_{n_{0}-1}}, \frac{\rho}{\rho_{n_{0}-1}} \right) \frac{h_{n_{0}}}{h_{n_{0}-1}} a_{n_{0}-1} + b_{n_{0}-2} \right] \sin \theta, \end{aligned} \tag{9}$$

Для того, чтобы выразить неизвестные амплитуды a_{n_0-2} и b_{n_0-2} через неопределенные коэффициенты a_{n_0} , a_{n_0-1} , b_{n_0} , b_{n_0-1} , воспользуемся непрерывностью u'^e и v'^e на окружности $\rho = \rho_{n_0-1}$. Приравнивая правые части соответствующих выражений в формулах для смещений (8) и (9) при $\rho = \rho_{n_0-1}$, получим линейную систему двух уравнений

$$\begin{split} d_{I}(\rho_{n_{0}-1},\rho_{n_{0}-1})a_{n_{0}} + d_{II}(\rho_{n_{0}-1},\rho_{n_{0}-1})a_{n_{0}-1} + d_{III}(\rho_{n_{0}-1},\rho_{n_{0}-1})b_{n_{0}} + b_{n_{0}-1} = \\ &= \rho_{n_{0}-1} \left[d_{I} \left(\frac{\rho_{n_{0}-2}}{\rho_{n_{0}-1}}, 1 \right) \frac{h_{n_{0}}}{h_{n_{0}-1}}a_{n_{0}-1} + d_{II} \left(\frac{\rho_{n_{0}-2}}{\rho_{n_{0}-1}}, 1 \right) a_{n_{0}-2} + \\ &+ d_{III} \left(\frac{\rho_{n_{0}-2}}{\rho_{n_{0}-1}}, 1 \right) \frac{h_{n_{0}}}{h_{n_{0}-1}}b_{n_{0}-1} + b_{n_{0}-2} \right], \\ e_{I}(\rho_{n_{0}-1}, \rho_{n_{0}-1})a_{n_{0}} + e_{II}(\rho_{n_{0}-1}, \rho_{n_{0}-1})a_{n_{0}-1} + e_{III}(\rho_{n_{0}-1}, \rho_{n_{0}-1})b_{n_{0}} + b_{n_{0}-1} = \\ &= \rho_{n_{0}-1} \left[e_{I} \left(\frac{\rho_{n_{0}-2}}{\rho_{n_{0}-1}}, 1 \right) \frac{h_{n_{0}}}{h_{n_{0}-1}}a_{n_{0}-1} + e_{II} \left(\frac{\rho_{n_{0}-2}}{\rho_{n_{0}-1}}, 1 \right) a_{n_{0}-2} + \\ &+ e_{III} \left(\frac{\rho_{n_{0}-2}}{\rho_{n_{0}-1}}, 1 \right) \frac{h_{n_{0}}}{h_{n_{0}-1}}b_{n_{0}-1} + b_{n_{0}-2} \right] \end{split}$$

относительно a_{n_0-2} и b_{n_0-2} с отличным от нуля определителем

$$\Delta_{n_0-2} = \rho_{n_0-1}^2 \left[d_{II} \left(\frac{\rho_{n_0-2}}{\rho_{n_0-1}}, 1 \right) - e_{II} \left(\frac{\rho_{n_0-2}}{\rho_{n_0-1}}, 1 \right) \right]$$

Ее решение имеет вид

$$a_{n_0-2} = q_{1,n_0-2}a_{n_0} + q_{2,n_0-2}a_{n_0-1} + q_{3,n_0-2}b_{n_0} + q_{4,n_0-2}b_{n_0-1},$$

$$b_{n_0-2} = q_{5,n_0-2}a_{n_0} + q_{6,n_0-2}a_{n_0-1} + q_{7,n_0-2}b_{n_0} + q_{8,n_0-2}b_{n_0-1},$$

где

$$\begin{split} q_{1,n_{0}-2} &= \frac{\rho_{n_{0}-1}}{\Delta_{n_{0}-2}} \left[d_{I}(\rho_{n_{0}-1},\rho_{n_{0}-1}) - e_{I}(\rho_{n_{0}-1},\rho_{n_{0}-1}) \right], \\ q_{2,n_{0}-2} &= \frac{\rho_{n_{0}-1}}{\Delta_{n_{0}-2}} \left[\left\{ d_{II}(\rho_{n_{0}-1},\rho_{n_{0}-1}) - d_{I}\left(\frac{\rho_{n_{0}-2}}{\rho_{n_{0}-1}},1\right) \rho_{n_{0}-1}\frac{h_{n_{0}}}{h_{n_{0}-1}} \right\} - \\ &- \left\{ e_{II}(\rho_{n_{0}-1},\rho_{n_{0}-1}) - e_{I}\left(\frac{\rho_{n_{0}-2}}{\rho_{n_{0}-1}},1\right) \rho_{n_{0}-1}\frac{h_{n_{0}}}{h_{n_{0}-1}} \right\} \right], \\ q_{3,n_{0}-2} &= \frac{\rho_{n_{0}-1}}{\Delta_{n_{0}-2}} \left[d_{III}(\rho_{n_{0}-1},\rho_{n_{0}-1}) - e_{III}(\rho_{n_{0}-1},\rho_{n_{0}-1}) \right], \\ q_{4,n_{0}-2} &= \frac{\rho_{n_{0}-1}}{\Delta_{n_{0}-2}} \left[\left\{ 1 - d_{III}\left(\frac{\rho_{n_{0}-2}}{\rho_{n_{0}-1}},1\right) \rho_{n_{0}-1}\frac{h_{n_{0}}}{h_{n_{0}-1}} \right\} \right], \\ q_{5,n_{0}-2} &= \frac{\rho_{n_{0}-1}}{\Delta_{n_{0}-2}} \left[e_{I}(\rho_{n_{0}-1},\rho_{n_{0}-1}) d_{II}\left(\frac{\rho_{n_{0}-2}}{\rho_{n_{0}-1}},1\right) - d_{I}(\rho_{n_{0}-1},\rho_{n_{0}-1}) e_{II}\left(\frac{\rho_{n_{0}-2}}{\rho_{n_{0}-1}},1\right) \right], \\ q_{6,n_{0}-2} &= \frac{\rho_{n_{0}-1}}{\Delta_{n_{0}-2}} \left[\left\{ e_{II}(\rho_{n_{0}-1},\rho_{n_{0}-1}) - e_{I}\left(\frac{\rho_{n_{0}-2}}{\rho_{n_{0}-1}},1\right) \rho_{n_{0}-1}\frac{h_{n_{0}}}{h_{n_{0}-1}} \right\} d_{II}\left(\frac{\rho_{n_{0}-2}}{\rho_{n_{0}-1}},1\right) - \\ &- \left\{ d_{II}(\rho_{n_{0}-1},\rho_{n_{0}-1}) - d_{I}\left(\frac{\rho_{n_{0}-2}}{\rho_{n_{0}-1}},1\right) - d_{III}(\rho_{n_{0}-1},\rho_{n_{0}-1})e_{II}\left(\frac{\rho_{n_{0}-2}}{\rho_{n_{0}-1}},1\right) \right], \\ q_{7,n_{0}-2} &= \frac{\rho_{n_{0}-1}}{\Delta_{n_{0}-2}} \left[\left\{ 1 - e_{III}\left(\frac{\rho_{n_{0}-2}}{\rho_{n_{0}-1}},1\right) \rho_{n_{0}-1}\frac{h_{n_{0}}}{h_{n_{0}-1}} \right\} d_{II}\left(\frac{\rho_{n_{0}-2}}{\rho_{n_{0}-1}},1\right) \right], \\ q_{8,n_{0}-2} &= \frac{\rho_{n_{0}-1}}{\Delta_{n_{0}-2}} \left[\left\{ 1 - e_{III}\left(\frac{\rho_{n_{0}-2}}{\rho_{n_{0}-1}},1\right) \rho_{n_{0}-1}\frac{h_{n_{0}}}{h_{n_{0}-1}} \right\} d_{II}\left(\frac{\rho_{n_{0}-2}}{\rho_{n_{0}-1}},1\right) - \\ &- \left\{ 1 - d_{III}\left(\frac{\rho_{n_{0}-2}}{\rho_{n_{0}-1}},1\right) \rho_{n_{0}-1}\frac{h_{n_{0}}}{h_{n_{0}-1}}} \right\} e_{II}\left(\frac{\rho_{n_{0}-2}}{\rho_{n_{0}-1}},1\right) \right]. \end{split}$$

Повторяя приведенные рассуждения, можно показать [5], что при всех $k \in \{3, \ldots, n_0 - (j-1)\}$ состояние соответствующей кольцевой секции $(\rho_{n_0-k}, \rho_{n_0-(k-1)})$ в упругой зоне диска описывается функциями

$$\begin{split} \sigma_{rr}^{\prime e} &= \left[a_{I} \left(\frac{\rho_{n_{0}-k-1}}{\rho_{n_{0}-(k-1)}}, \frac{\rho}{\rho_{n_{0}-(k-1)}} \right) \frac{h_{n_{0}-(k-2)}}{h_{n_{0}-(k-1)}} a_{n_{0}-(k-1)} + a_{II} \left(\frac{\rho_{n_{0}-k}}{\rho_{n_{0}-(k-1)}}, \frac{\rho}{\rho_{n_{0}-(k-1)}} \right) \right) \times \\ &\times a_{n_{0}-k} + a_{III} \left(\frac{\rho_{n_{0}-k}}{\rho_{n_{0}-(k-1)}}, \frac{\rho}{\rho_{n_{0}-(k-1)}} \right) \frac{h_{n_{0}-(k-2)}}{h_{n_{0}-(k-1)}} a_{n_{0}-(k-1)} + b_{II} \left(\frac{\rho_{n_{0}-k}}{\rho_{n_{0}-(k-1)}}, \frac{\rho}{\rho_{n_{0}-(k-1)}} \right) \times \\ &\times a_{n_{0}-k} + b_{III} \left(\frac{\rho_{n_{0}-k}}{\rho_{n_{0}-(k-1)}}, \frac{\rho}{\rho_{n_{0}-(k-1)}} \right) \frac{h_{n_{0}-(k-2)}}{h_{n_{0}-(k-1)}} a_{n_{0}-(k-1)} + b_{III} \left(\frac{\rho_{n_{0}-k}}{\rho_{n_{0}-(k-1)}}, \frac{\rho}{\rho_{n_{0}-(k-1)}} \right) \frac{h_{n_{0}-(k-2)}}{h_{n_{0}-(k-1)}} b_{n_{0}-(k-1)} + c_{II} \left(\frac{\rho_{n_{0}-k}}{\rho_{n_{0}-(k-1)}}, \frac{\rho}{\rho_{n_{0}-(k-1)}}, \frac{\rho}{\rho_{n_{0}-(k-1)}} \right) \frac{h_{n_{0}-(k-2)}}{h_{n_{0}-(k-1)}} b_{n_{0}-(k-1)} + b_{n_{0}-k} \right] \sin \theta, \end{split}$$
(10)
$$& u'^{e} = \rho_{n_{0}-(k-1)} \frac{\sigma_{E}}{E} \left[d_{I} \left(\frac{\rho_{n_{0}-k}}{\rho_{n_{0}-(k-1)}}, \frac{\rho}{\rho_{n_{0}-(k-1)}} \right) \frac{h_{n_{0}-(k-2)}}{h_{n_{0}-(k-1)}} a_{n_{0}-(k-1)} + b_{n_{0}-k} \right] \sin \theta, \\ u'^{e} = \rho_{n_{0}-(k-1)} \frac{\sigma_{E}}{E} \left[e_{I} \left(\frac{\rho_{n_{0}-k}}{\rho_{n_{0}-(k-1)}}, \frac{\rho}{\rho_{n_{0}-(k-1)}} \right) \frac{h_{n_{0}-(k-2)}}{h_{n_{0}-(k-1)}} a_{n_{0}-(k-1)} + b_{n_{0}-(k-1)} + b_{n_{0}-k} \right] \cos \theta, \\ u'^{e} = \rho_{n_{0}-(k-1)} \frac{\sigma_{E}}{E} \left[e_{I} \left(\frac{\rho_{n_{0}-k}}{\rho_{n_{0}-(k-1)}}, \frac{\rho}{\rho_{n_{0}-(k-1)}} \right) \frac{h_{n_{0}-(k-2)}}{h_{n_{0}-(k-1)}} a_{n_{0}-(k-1)} + b_{n_{0}-(k-1)} + b_{n_{0}-k} \right] \cos \theta, \\ u'^{e} = \rho_{n_{0}-(k-1)} \frac{\sigma_{E}}{E} \left[e_{I} \left(\frac{\rho_{n_{0}-k}}{\rho_{n_{0}-(k-1)}}, \frac{\rho}{\rho_{n_{0}-(k-1)}} \right) \frac{h_{n_{0}-(k-2)}}{h_{n_{0}-(k-1)}} a_{n_{0}-(k-1)} + b_{n_{0}-(k-1)} + b_{n_{0}-k} \right] \sin \theta, \\ u'^{e} = \rho_{n_{0}-(k-1)} \frac{\sigma_{E}}{E} \left[e_{I} \left(\frac{\rho_{n_{0}-k}}{\rho_{n_{0}-(k-1)}}, \frac{\rho}{\rho_{n_{0}-(k-1)}} \right) \frac{h_{n_{0}-(k-2)}}{h_{n_{0}-(k-1)}} a_{n_{0}-(k-1)} + b_{n_{0}-(k-1)} + b_{n_{0}-(k-1)} \right] \frac{h_{n_{0}-(k-2)}}{h_{n_{0}-(k-1)}} a_{n_{0}-(k-1)} + b_{n_{0}-(k-1)} \right] \frac{h_{n_{0}-(k-1)}}{h_{n_{0}-(k-1)}} a_{n_{0}-(k-1)} + b_{n_{0}-(k-1)} \frac{h_{n_{0}-(k-1)}}{h_{n_{0}-(k-1)}} a_{n_{0}-(k$$

где

$$a_{n_0-k} = q_{1,n_0-k}a_{n_0} + q_{2,n_0-k}a_{n_0-1} + q_{3,n_0-k}b_{n_0} + q_{4,n_0-k}b_{n_0-1},$$

$$b_{n_0-k} = q_{5,n_0-k}a_{n_0} + q_{6,n_0-k}a_{n_0-1} + q_{7,n_0-k}b_{n_0} + q_{8,n_0-k}b_{n_0-1},$$

$$\begin{split} q_{1,n_{0}-k} &= \gamma_{2,n_{0}-k} q_{1,n_{0}-k} + \gamma_{2,n_{0}-k} q_{2,n_{0}-k} q_{3,n_{0}-(k-1)} + \gamma_{4,n_{0}-k} q_{3,n_{0}-(k-1)}, \\ q_{2,n_{0}-k} &= \gamma_{1,n_{0}-k} + \gamma_{2,n_{0}-k} q_{3,n_{0}-(k-1)} + \gamma_{4,n_{0}-k} q_{3,n_{0}-(k-1)}, \\ q_{4,n_{0}-k} &= \gamma_{3,n_{0}-k} + \gamma_{2,n_{0}-k} q_{4,n_{0}-(k-1)} + \gamma_{4,n_{0}-k} q_{5,n_{0}-(k-1)}, \\ q_{5,n_{0}-k} &= \gamma_{5,n_{0}-k} + \gamma_{6,n_{0}-k} q_{2,n_{0}-(k-1)} + \gamma_{8,n_{0}-k} q_{5,n_{0}-(k-1)}, \\ q_{5,n_{0}-k} &= \gamma_{5,n_{0}-k} + \gamma_{6,n_{0}-k} q_{2,n_{0}-(k-1)} + \gamma_{8,n_{0}-k} q_{6,n_{0}-(k-1)}, \\ q_{7,n_{0}-k} &= \gamma_{5,n_{0}-k} + \gamma_{6,n_{0}-k} q_{4,n_{0}-(k-1)} + \gamma_{8,n_{0}-k} q_{5,n_{0}-(k-1)}, \\ q_{7,n_{0}-k} &= \gamma_{7,n_{0}-k} + \gamma_{6,n_{0}-k} q_{4,n_{0}-(k-1)} + \gamma_{8,n_{0}-k} q_{5,n_{0}-(k-1)}, \\ q_{8,n_{0}-k} &= \gamma_{7,n_{0}-k} + \gamma_{6,n_{0}-k} q_{4,n_{0}-(k-1)} + \gamma_{8,n_{0}-k} q_{5,n_{0}-(k-1)}, \\ \gamma_{1,n_{0}-k} &= \frac{p_{n_{0}-(k-2)}^{n_{0}-(k-1)}}{h_{n_{0}-(k-2)}} \int_{n_{0}-(k-2)}^{n_{0}-(k-1)} h_{n_{0}-(k-2)} - h_{n_{0}-(k-2)} h_{n_{0}-(k-2)} h_{n_{0}-(k-2)} - h_{n_{0}-(k-2)} h_{n_{0}-(k-2)} - h_{n_{0}-(k-2)} h_{n_{0}-(k-2)} h_{n_{0}-(k-2)} h_{n_{0}-(k-2)} h_{n_{0}-(k-2)} h_{n_{0}-(k-2)} - h_{n_{0}-(k-2)} h_{n_$$

и при $k = n_0 - (j-1)$ по определению $\rho_{n_0-k} := \beta_0$.

Удовлетворение функциями (8)-(10) граничным условиям

 $\sigma_{rr}^{\prime e} + A_1 u^{\prime e} = 0, \quad \sigma_{r\theta}^{\prime e} - A_2 \frac{du^{\prime e}}{d\theta} = 0, \quad \rho = 1,$

условию сопряжения

$$\sigma_{r\theta}^{\prime e} = 0, \quad \rho = \beta_0,$$

и условию уравновешенности контурных нагрузок (*) приводит к системе линейных однородных уравнений относительно a_{n_0}, a_{n_0-1} и b_{n_0} :

$$a_{n_0} + A_1 \frac{\sigma_s}{E} \left\{ d_I(\rho_{n_0-1}, 1)a_{n_0} + d_{II}(\rho_{n_0-1}, 1)a_{n_0-1} + d_{III}(\rho_{n_0-1}, 1)b_{n_0} + \left[w_1 a_{n_0} + w_2 a_{n_0-1} + w_3 b_{n_0} \right] \right\} = 0,$$

$$b_{n_{0}} + A_{2} \frac{\sigma_{s}}{E} \left\{ d_{I}(\rho_{n_{0}-1}, 1)a_{n_{0}} + d_{II}(\rho_{n_{0}-1}, 1)a_{n_{0}-1} + d_{III}(\rho_{n_{0}-1}, 1)b_{n_{0}} + \\ + [w_{1}a_{n_{0}} + w_{2}a_{n_{0}-1} + w_{3}b_{n_{0}}] \right\} = 0,$$

$$q_{5,n_{0}-(n_{0}-[j-1])}a_{n_{0}} + q_{6,n_{0}-(n_{0}-[j-1])}a_{n_{0}-1} + q_{7,n_{0}-(n_{0}-[j-1])}b_{n_{0}} + \\ + q_{8,n_{0}-(n_{0}-[j-1])}[w_{1}a_{n_{0}} + w_{2}a_{n_{0}-1} + w_{3}b_{n_{0}}] = 0,$$

$$(11)$$

где

$$w_{1} = \frac{1 - \beta_{0}[q_{1,n_{0}-(n_{0}-[j-1])} - q_{5,n_{0}-(n_{0}-[j-1])}]}{\beta_{0}[q_{4,n_{0}-(n_{0}-[j-1])} - q_{8,n_{0}-(n_{0}-[j-1])}]}, \quad w_{2} = -\frac{q_{2,n_{0}-(n_{0}-[j-1])} - q_{6,n_{0}-(n_{0}-[j-1])}}{q_{4,n_{0}-(n_{0}-[j-1])} - q_{8,n_{0}-(n_{0}-[j-1])}},$$
$$w_{3} = -\frac{1 + \beta_{0}[q_{3,n_{0}-(n_{0}-[j-1])} - q_{7,n_{0}-(n_{0}-[j-1])}]}{\beta_{0}[q_{4,n_{0}-(n_{0}-[j-1])} - q_{8,n_{0}-(n_{0}-[j-1])}]}.$$

Характеристическое уравнение имеет вид

$$\det T(\beta_0) = 0,\tag{12}$$

где $T = (t_{ij})_{i,j=1}^3$ — матрица системы (11), в которой $t_{11} = 1 + A_1 \{ d_I(\rho_{n_0-1}, 1) + w_1 \} \frac{\sigma_s}{E}, \quad t_{12} = A_1 \{ d_{II}(\rho_{n_0-1}, 1) + w_2 \} \frac{\sigma_s}{E}, \\ t_{13} = A_1 \{ d_{III}(\rho_{n_0-1}, 1) + w_3 \} \frac{\sigma_s}{E}, \\ t_{21} = A_2 \{ d_I(\rho_{n_0-1}, 1) + w_1 \} \frac{\sigma_s}{E}, \quad t_{22} = A_2 \{ d_{II}(\rho_{n_0-1}, 1) + w_2 \} \frac{\sigma_s}{E}, \\ t_{23} = 1 + A_2 \{ d_{III}(\rho_{n_0-1}, 1) + w_3 \} \frac{\sigma_s}{E}, \\ t_{31} = q_{5,n_0-(n_0-[j-1])} + w_1 q_{8,n_0-(n_0-[j-1])}, \quad t_{32} = q_{6,n_0-(n_0-[j-1])} + w_2 q_{8,n_0-(n_0-[j-1])}, \\ t_{33} = q_{7,n_0-(n_0-[j-1])} + w_3 q_{8,n_0-(n_0-[j-1])}.$

Анализ результатов

Уравнение (12) для кольцевых дисков, исследованных в работе [5], не имеет решений. Опровержение предположения о возможной неустойчивости по эксцентричной форме обобщает полученный ранее результат [19] для плоского кругового кольцевого диска. Как следствие, подлежит анализу потеря устойчивости сплошного кругового ступенчатого диска.

Предположим вначале, что $\beta_{0*} \neq 0$. В этом случае для получения характеристического уравнения (15) достаточно учесть в предыдущих рассуждениях, что $\beta = 0$, $C_1 = 0$ (см. (2)), $\varepsilon_i = 0$, $\varkappa_i = 0$, $\mu^{-1} = 0$ (см. (5), (6)). Полученное характеристическое уравнение также не имеет решений, что согласуется с результатами работы [19] для плоских дисков.

Единственно возможное критическое значение радиуса пластической зоны $\beta_{0*} = 0$ сплошного кругового ступенчатого диска не может быть получено как решение упомянутого уравнения (12), т.к. представляет предельный случай $\beta_0 \to 0$ и должно анализироваться отдельно. Для этого следует указать, что в пределе при $\beta_0 \to 0$ (или $x_0 \to \infty$) $d_0 \to 1/2$, $f_0 \to -1/2$, $Q \to 0$, $Q^* \to 0$, $R \to 0$, $R^* \to 0$, $S \to 1$, $S^* \to 1$ (см. (2)-(4)). При этом условие (*) сводится к условию равновесия системы сил $\bar{a} = \bar{b}$ на контуре $\rho = 1$. Уравнения сохранения связи первой (внутренней) секции диска с остальной частью диска приобретают вид системы

$$\begin{split} \rho_2 \left[d_I \left(\frac{\rho_1}{\rho_2}, \frac{\rho_1}{\rho_2} \right) \frac{h_3}{h_2} a_2 + d_{II} \left(\frac{\rho_1}{\rho_2}, \frac{\rho_1}{\rho_2} \right) a_1 + d_{III} \left(\frac{\rho_1}{\rho_2}, \frac{\rho_1}{\rho_2} \right) \frac{h_3}{h_2} b_2 + b_1 \right] = \\ &= \rho_1 \left[d_I \left(0+, 1 \right) \frac{h_2}{h_1} a_1 + d_{II} \left(0, 1 \right) a_0 + d_{III} \left(0+, 1 \right) \frac{h_2}{h_1} b_1 + b_0 \right], \\ \rho_2 \left[e_I \left(\frac{\rho_1}{\rho_2}, \frac{\rho_1}{\rho_2} \right) \frac{h_3}{h_2} a_2 + e_{II} \left(\frac{\rho_1}{\rho_2}, \frac{\rho_1}{\rho_2} \right) a_1 + e_{III} \left(\frac{\rho_1}{\rho_2}, \frac{\rho_1}{\rho_2} \right) \frac{h_3}{h_2} b_2 + b_1 \right] = \\ &= \rho_1 \left[e_I \left(0+, 1 \right) \frac{h_2}{h_1} a_1 + e_{II} \left(0, 1 \right) a_0 + e_{III} \left(0+, 1 \right) \frac{h_2}{h_1} b_1 + b_0 \right], \end{split}$$

согласующейся с условием $a_1 = b_1$. Кроме этого, то обстоятельство, что систему образуют предельные соотношения, приводит к условиям $a_0 = 0$ и $b_0 = 0$ на краю точечного отверстия [14]. Последнее, в частности, гарантирует тождество det $T(0) \equiv 0$. Соответствующее критическому значению радиуса пластической области $\beta_{0*} = 0$ критическое значение квадрата угловой скорости в случае $\varkappa_e \neq 0$ получаем по формуле

$$\omega_*^2 = \frac{8q^2}{\nu+3} \frac{\eta(0) - (A_{n_0} - B_{n_0})}{D_{n_0} - 1},$$

а в случае $\varkappa_e = 0$ — по формуле

$$\omega_*^2 = \frac{8q^2}{\nu+3} \frac{\varepsilon_e - (A_{n_0} - B_{n_0})}{D_{n_0} - 1}.$$

Заключение

Потеря устойчивости вращающегося сплошного кругового ступенчатого диска по эксцентричной форме возможна при возникновении пластического состояния в центре. Геометрией диска и подбором параметров нагружения можно варьировать критическую угловую скорость (ω_*/q в табл. 1; $n_0 = 3$, $r_1 = b/3$, $r_2 = 2b/3$, $\nu = 0,3$, $\sigma_s/E = 0,01$, $\varepsilon_e = 0$, $\overline{\gamma}/\gamma = 1$, $\varphi = 1,5$): "концентрация" массы диска в центральной секции (при $\varkappa_e = 0$, т.е. $p_e = 0$) способствует сохранению его устойчивости. Это объясняется увеличением уравновешенности диска и возрастанием сопротивляемости возможному эксцентриситету за счет "запаса упругости" в центре. Такой вывод сопоставим с заключением относительно самоуравновешенной формы потери устойчивости [5], развивающейся преимущественно при несколько большей угловой скорости вращения (ω_{0*}/q в табл. 1) и существенно большим нуля критическом радиусе, возможному дальнейшему возрастанию которого с сохранением устойчивости диска способствует переход к более тонким периферийным ступеням.

h_k	$\frac{\omega_*}{q}$ ($\varkappa_e = 0$)	$\frac{\omega_*}{q}$ $(arkappa_e=rac{1}{3})$	$\frac{\omega_{0*}}{q}$
$\frac{\frac{4}{30} - \frac{1}{10k}}{4}$	1,1734	0,6632	1,4752
	1,1750	0,6519	1,4485
$h_1 = \frac{1}{30}, \ h_2 = h_3 = \frac{2}{30}$	1,2854	0,7427	1,5277
$h_1 = h_2 = \frac{1}{30}, \ h_3 = \frac{2}{30}$	1,3279	0,7268	1,4783
$h_1 = h_3 = \frac{1}{30}, \ h_2 = \frac{2}{30}$	1,4809	0,9382	1,7535
$h_1 = h_2 = h_3 = \frac{1}{30}$	1,5569	0,9112	1,6718
$h_1 = h_3 = \frac{2}{30}, \ h_2 = \frac{1}{30}$	1,6653	0,9280	1,6407
$h_1 = h_2 = \frac{2}{30}, \ h_3 = \frac{1}{30}$	1,7953	1,1556	1,9453
$h_1 = \frac{2}{30}, \ h_2 = h_3 = \frac{1}{30}$	1,9501	1,1690	1,9150

h_k	$\frac{\omega_*}{q} \ (\varkappa_e = 0)$	$\frac{\omega_*}{q} \left(\varkappa_e = \frac{1}{3}\right)$	$\frac{\omega_{0*}}{q}$
	2,0372	1,3310	2,1101
$\begin{bmatrix} \frac{1}{10k} \\ \vdots \\ $	2,1199	1,3435	2,1175

Табл. 1: Значения относительной критической угловой скорости.

Литература

- [1] *Гузь А.Н., Немиш Ю.Н.* Метод возмущения формы границы в механике сплошных сред. К.: Вища шк., 1989. 352 с.
- [2] Ершов Л.В., Ивлев Д.Д. О потере устойчивости вращающихся дисков // Изв. АН СССР, ОТН. 1958. — № 1. — С. 124–125.
- [3] Ивлев Д.Д. О потере несущей способности вращающихся дисков, близких к круговому // Изв. АН СССР, ОТН. – 1957. – № 1. – С. 141–144.
- [4] Ивлев Д.Д., Ершов Л.В. Метод возмущений в теории упругопластического тела. М.: Наука, 1978. — 208 с.
- [5] Лила Д.М. О неустойчивости вращающегося упругопластического ступенчатого кольцевого диска // Зб. праць Ін-ту математики НАН України. — 2014. — 11, № 4. — С. 124–152.
- [6] Лила Д.М., Мартынюк А.А. Эксцентричная форма потери устойчивости вращающегося упругопластического радиально неоднородного ступенчатого кругового диска // Мат. методи та фіз.-мех. поля. - 2015. - 58, № 4. - С. 47-57.
- [7] Lila D.M. Loss of Stability of a Rotating Elastoplastic Radially Inhomogeneous Multidiameter Annular Disk // J. Math. Sci. - 2016. - 215, No 1. - P. 89-109.
- [8] Lila D.M., Martynyuk A.A. Stability Loss of Rotating Elastoplastic Discs of the Specific Form // Appl. Math. - 2011. - 2, No 5. - P. 579-585.
- [9] *Надаи А.* Пластичность и разрушение твердых тел: в 2т. М.: Изд-во иностр. лит., 1954. Т. 1. 648 с.
- [10] Соколовский В.В. Теория пластичности. М.: Высш. шк., 1969. 608 с.
- [11] Лила Д.М., Мартынюк А.А. О потере устойчивости вращающегося упруго-пластического кругового диска // Доп. НАН України. — 2011. — № 1. — С. 44–51.
- [12] Lila D.M., Martynyuk A.A. Development of instability in a rotating elastoplastic annular disk // Int. Appl. Mech. - 2012. - 48, No 2. - P. 224-233.
- [13] Лила Д.М. Упругопластическая неустойчивость вращающегося тонкого диска // Прикл. проблеми мех. і мат. — 2016. — Вип. 14. — С. 92–98.
- [14] Бицено К.Б., Граммель Р. Техническая динамика: в 2т. М.-Л.: Гос. изд-во техн.-теор. лит., 1952. — Т. 2. — 640 с.
- [15] Демьянушко И.В., Биргер И.А. Расчет на прочность вращающихся дисков. М.: Машиностроение, 1978. — 247 с.
- [16] Mazière M., Besson J., Forest S., Tanguy B., Chalons H., Vogel F. Overspeed burst of elastoviscoplastic rotating disks: Part I — Analytical and numerical stability analyses // Eur. J. Mech. A-Solid. — 2009. — 28, No 1. — P. 36–44.
- [17] Mazière M., Besson J., Forest S., Tanguy B., Chalons H., Vogel F. Overspeed burst of elastoviscoplastic rotating disks: Part II — Burst of a superalloy turbine disk // Eur. J. Mech. A-Solid. — 2009. — 28, No 3. — P. 428–432.
- [18] Lila D.M., Martynyuk A.A. Analysis of Dynamics of Boundary Shape Perturbation of a Rotating Elastoplastic Radially Inhomogeneous Plane Circular Disk: Analytical Approach // Appl. Math. - 2012. - 3, No 5. - P. 451-456.
- [19] Лила Д.М. Эксцентричная форма потери устойчивости вращающегося упруго-пластического диска // Доп. НАН України. — 2011. — № 2. — С. 49–53.

- [20] Лила Д.М. Эксцентричная форма неустойчивости вращающегося составного плоского кругового диска // Доп. НАН України. — 2012. — № 9. — С. 55–61.
- [21] Бицено К.Б., Граммель Р. Техническая динамика: в 2т. М.-Л.: Гос. изд-во техн.-теор. лит., 1950. — Т. 1. — 900 с.

ECCENTRIC FORM OF THE LOSS OF STABILITY OF A ROTATING STEPPED

Lila D.M. SUMMARY

A procedure for investigation of possible stability loss by a rotating elastoplastic stepped circular disc by the method of small parameter is proposed. A characteristic equation for the critical radius of the plastic zone is obtained as a first approximation. The values of critical angular rotational velocity for various parameters of the disc are found numerically.

Keywords: elastoplastic problem, boundary shape perturbation method, rotating disc, stability loss, critical angular velocity.

ЕКСЦЕНТРИЧНА ФОРМА ВТРАТИ СТІЙКОСТІ СТУПІНЧАСТОГО ДИСКА, ЩО ОБЕРТАЄТЬСЯ

Лила Д.М. РЕЗЮМЕ

Запропоновано спосіб дослідження методом малого параметра можливої втрати стійкості ступінчастого кругового диска, що обертається. Одержано у першому наближенні характеристичне рівняння відносно критичного радіуса пластичної зони. Чисельно знайдено значення критичної кутової швидкості обертання за різних параметрів диску.

Ключові слова: пружно-пластична задача, метод збурення форми межі, диск, що обертається, втрата стійкості, критична кутова швидкість.