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PARASTROPHIC SYMMETRY IN QUASIGROUP THEORY

In this article some problems in quasigroup theory are emphasized. Special attention is devoted to
parastrophic symmetry. Definitions of parastrophy are defined on: relations and operations, quasigroup varieti-
es, propositions, quasigroup identities, concepts in quasigroup theory and etc. As an example, parastrophically
closed set of concepts of one-sided neutral elements as well as the corresponding varieties are given.
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Introduction

The quasigroup theory has some different directions of investigation: combinatorial (Latin squares, cubes
and hypercubes,. .. ), algebraic (classes of quasigroups, homomorphisms, subquasigroups,. .. ) geometrical (webs,
configurations, ...) and so on. Here, in this article, we pay your attention to a direction which can be called a
function direction or a function method.

Every n-ary quasigroup can be defined as a pair (Q;f), where @ is a set called carrier and f is an
invertible n -ary operation defined on @ . ‘Invertible’ means that f is an invertible element in ¢-th symmetric

monoid (£2,;®) for every i =1,...,n, where @ is called i -th multiplication or i-th Mann superposition of
P K3

7
n -ary operations and is defined by

<f6?g) (1, oy n) = (@1, o1, 9(T1, o, Tn)y Tid 1y e ooy Ty ) (1)

Note when n = 1, the set of invertible operations coincides with the set of permutations of @ . Butif n > 1,
the set of invertible operations does not form a subgroup in any of the monoids (,;®) .
K3

Composition, that is consecutive application of multiary functions, is a binary operation on unary functions,
but it is not an operation on multiary functions because arity of the composition is not defined. That is why
superpositions are operations which are certain restrictions of the composition.

Now we give a very short information about directions of the investigation of invertible functions of different
arities.

Problem 1. What is the most convenient algebra of functions for the study of invertible operati-
ons? Only repetition-free composition of invertible operations is invertible. From this point of view, it
is convenient to study bi-unary semigroups (®;*,&,7), where *,£,7 are taken from the signature of Post
algebras [9]; or position algebras [5].

Problem 2. Conditions under which a repetition composition of invertible operations is invertible.
For Mann superpositions of binary operations the question was answered by V.D. Belousov [2], and for multiary
functions it has been solved in [14].

For every o € S, there exists a unary superposition called o -parastrophism. o -parastrophe of an inverti-
ble operation is invertible. The author does not know any results concerning other superpositions.

Problem 3. Parastrophic symmetry relations in quasigroup theory. Every parastrophe of a quasigroup
is a quasigroup, i.e., the class of all quasigroups is parastrophically closed. Hence, every concept given for all
quasigroups is given for all pairwise parastrophic quasigroups. From a different point of view, a concept for a
quasigroup transforms into another concept in each parastrophe of the quasigroup. These concepts are said to
be parastrophic. It means that defining a concept in the class of all n -ary quasigroups we define n! parastrophic
concepts simultaneously. Since S,,4+1 defines an action on the set of all quasigroup operations with a fixed carrier
and the concepts based on quasigroup operations, therefore we can define an action of S,41 on arbitrary set
of pairwise parastrophic concepts. These actions will help us to improve quasigroup theory. For example, to
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give an answer to the following questions: What dependencies exist among parastrophic concepts? How many
of parastrophic concepts could be different? Analogical questions arise about propositions, varieties, and so on.
As an example, we analyse the notion of one-sided, two-sided and three-sided neutrality of an element in
a quasigroup and the corresponding varieties.
Another approach to parastrophic symmetry one can find in [12].

Problem 4: Description of parastrophically irreducible identities (functional equations). An
identity is said to be: reducible, if it is equivalent to a conjunction of identities of shorter lengths; parastrophically
reducible, if at least one of parastrophes of the identity is reducible. For example, it is proved [15] that every
quadratic quasigroup identity in n > 4 individual variables is reducible.

Problem 5: Description of relations between isotopy and isomorphy in different classes of quasi-
groups. For example, 1) if two inverse property loops are isotopic then they are pseudo-isomorphic [14]; 2)
if two commutative inverse property loops are isotopic then they are isomorphic [14]; 3) a loop has isotopy-
isomorphy property (all loops being isotopic to it is isomorphic) if and only if every its element is left and right
companion of its pseudo-automorphism.

Problem 6: Let K; and K> be two classes of functions. The study of presentations of functions
from K as compositions of functions from K. The following sub-problems can be highlighted in this
problem:

e possibility — when a function from K; can be presented as a composition of functions from Ko ?
e uniqueness — what dependencies exist among the presentations of the same function?
e canonicality — is there some type of presentations which always exists and unique in some sense?

e tools of investigation — what dependence exists between an investigation tool of a function and the
corresponding tool of its presentation components?

We cite a few examples of the results.

Possibility. 1. Belousov’s theorem: Ewvery distributive quasigroup is linearly isotopic to a commutati-
ve Moufang loop [14]); 2. Bruck-Toyoda theorem: every medial quasigroup is linearly isotopic to an Abelian
group [10]; 3. Every n-ary partially associative quasigroup is a polynomial in an algebra (Q;+,g,¢,a), where
(Q;+) is a group, ¢ its automorphism, (Q;g) is a multiary quasigroup [1, 13]; 4. A.N. Kolmogorov [7]: Every
multiary real continuous function is presentable as a composition of unary real continuous functions and the
addition.

Uniqueness. A.V.Kuznetsov [8]: 1. Every two full repetilion-free decompositions of boolean function
without dummy variable are almost the same. In [19] the result was obtained for functions defined on three-
element sets. For arbitrary power sets it is proved that the corresponding components of two full repetition-free
decompositions of a quasigroup are isotopic [1] and the decompositions are almost identical [18].

Tools of investigation. Two distributive quasigroups being defined on the same Moufang loop are
isomorphic if and only if their defining automorphisms are conjugated by an automorphism of the Moufang
loop [14].

Problem 7: Description of functional equations on quasigroup operations. A functional equation is
called generalized if all its functional variables are pairwise different. Therefore, some properties being true for
generalized functional equations are true for all functional equations. We define equivalence relation on functional
equations: two of them are equivalent if one of them can be obtained from the other in a finite number of some
fixed transformations. These transformations preserve continuity and order. Functional equations belong to the
same class, if their solutions are mutually expressible.

Problem 8: To establish relationships between decomposition of multiary functions and
orthogonality. Using repetition-free compositions and other type of compositions of multiary functions, one
can construct algorithms which construct tuples of orthogonal operations [4, 3, 20, 6],
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Problem 9: Functional equations and continuous mathematics. Every composition of continuous
functions is continuous. Therefore, all results obtained for quasigroups using composition are true for topological
quasigroups. Since topological groups on real space with the standard topology are topologically isomorphic
and continuous invertible functions are monotonic, then all solutions of functional equations on the set of all
topological invertible real functions are expressed by monotonic functions and the addition of real numbers [16].

Problem 10: Functional equations and discrete mathematics.

Preliminaries

Asubset p C Q" :=Q xQ Xx...xQ is called an n -ary relation defined on Q. An n-ary relation is
~_—_—— ——

n times
called functional, if the first n — 1 element uniquely defines the n-th one, i.e.

(a1, an-1,0) €p A (a1,...,apn_1,¢) Ep= b=c.
In this case, the following relation is assumed to be true:
(a1y... an-1,b) €p & plai,...,an—1) =b.
If, in addition, for every ai,...,a,—1 € @ there exists b € Q such that p(ay,...,a,—1) = b, then p is called

an (n — 1) -ary operation and it can be considered as a mapping of Q" ! to Q.
So, in particular, a relation p is invertible or a quasigroup relation, or a quasigroup operation if in a formula

(x1,...,%pn_1,2n) € p arbitrary values of arbitrary n—1 variables uniquely define a value of the n -th variable.
Evidently, this property is invariant under arbitrary permutation of the variables x1, ..., Tn_1, Tn -
Let Q,(Q) be the set of all n-ary operations defined on @ . n associative superpositions @, ..., @ are
1 n

defined on Q,(Q) by

(f@g) (@1, mn) = f@n, ., 2im1, 9(T1, - T0), T, -, ), 1= 1,00 (2)

Monoid (£2,(Q);®) is called i -th symmetric monoid of n-ary operations. An n-ary operation is called i -
K3

invertible, if it is invertible in the i-th symmetric monoid, i.e., their exists an operation [f | called an i -th
inverse operation, such that

follf=e,  Urof=e, (3)
where e;(x1,...,2,) := x; and e; is called i-th selector. So, f is i-invertible, if the following identities (we
will call them primary identities)

f(xla sy Ti—1, Mf(zla tee 7$7L)7xi+17 e 737”) = T4

(4)

[i]f(ajlw--7xi71af($17"'7xn)7xi+l7~-~7xn) = Tj.

hold for some operation [If . An n-ary operation is called invertible, if it is invertible in every symmetric
monoid of n-ary operations:

(@u(Q)), -y (2(Q10).

In other words, f is invertible, if it has i -inverse operation for every i =1,...,n. Note, the full sequence [f
.., [Mf of inverse operations is uniquely defined.
An n-ary operation f is called an i -quasigroup operation, if for every a1, ..., a,, b the equation
f(ala-"7ai717$7a7l+17"'7an):b (5)
has a unique solution in @ . An assigning to every (ai,...,a;-1,0,an+1,...,a,) the solution of (5) is an n-

ary operation. It is easy to verify that this operation is exactly i-inverse to f, so ‘quasigroup operation’ and
‘inverse operation’ are the same concept.

An algebra (Q; f,[Mf, ..., ["f) is called an n -ary quasigroup, if f is an invertible operation and [Mf
..., "f are its full sequence of inverse operations. Then class of all n-ary quasigroups forms a variety which
is defined by primary identities (4).
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Actions. Let S,, denote the symmetric group of the degree n, namely the group of all permutations of the
set 1,n:={1,2,...,n} and let ¢ denote the identical transformation of an arbitrary set.
Let S, act onaset K ,i.e. forall k€ K and for all 0 € S5 the element “k belongs to K and equalities

O'(Tk):G’Tk,7 Lk:k

hold. We adduce some statements which immediately follow from the well-known results of the group action
theory. For this purpose, we introduce some special names and notations.
The relation ~ being defined on K by

k~m < (30€S,) k=m

is called parastrophic. An orbit of an element k € K will be called a truss of k and denoted by Tr(k) ; stabilizer
group of k will be called a parastrophic symmetry group of k and denoted by Ps(k); a stabilizer group of
Ps(k) under the conjugate action will be called a normalizer group of k or a 1-normalizer group of k and will
be denoted by Norm; (1) ; the set of points fixed by g is called a kernel of ¢ and denoted by K9 . Hence,

Tr(k) :={m e K| (30 € G)m =k}, Ps(k) :={o | 7k = k},
Norm; (k) := {0 | Ps(k)o = oPs(k)}, K°:={ke K|%% =k},
Norm; (k) := {o | Norm;_;(k)o = oNorm,_;(k)}, i=1,2,...,
Normg (k) := Ps(k).
In other words,
e a truss Tr(k) of k isits orbit under the action, i.e., the set of all elements which are parastrophic to & ;

e a parastrophic symmetry group Ps(k) of k is its stabilizer group, i.e., the set of all parastrophisms which
does not change the element k;

e a normalizer group Norm(k) = Norm; (k) of k is a set of all parastrophisms which does not change its
parastrophic symmetry group under the conjugate action;

e a i-th normalizer group Norm,(k) of k is a set of all parastrophisms which does not change its (i —1) -th
normalizer group Norm;_;(k) under the conjugate action.

Theorem 1. Let n be a natural number and the group S, act on a set K . Then the following properties are
true:

1. ~ is an equivalence relation on K and Tr(k) is a block of the corresponding partition of K which
contains the element k ;

2. a parastrophic symmetry group Ps(k) and normalizer groups Norm,(k) of an arbitrary element k € K
are subgroups of S, and there exists s such that

Ps(k) < Norm; (k) < Normg(k) < --- < Normg(k) < Sp;

3. parastrophic symmetry groups and normalizer groups of elements from the same orbit are conjugate:

Ps(“k) = o(Ps(k))o !, Norm;(“k) = o(Norm; (k))o ™!, i=1,...,s;

4. the set of all parastrophisms between k and “k is equal to o(Ps(k)) ;

5. |Tr(k)| = (n+ 1)!/|Ps(k)| is the number of all different elements which are parastrophic to k ;

R

(n+1)!/|Norm; (k)| is the number of all different normalizer groups Norm;_1(k) of elements from Tr(k) ;

<

. |Norm(k)|/|Ps(k)| is the number of all different elements in the truss of k which have the same
parastrophic symmetry group;

Fedir M. Sokhatsky 73



ISSN 1817-2237. Bicuuk JdouHY. Cep. A: Ilpupomuunui Hayku. - 2016.- Ne 1-2

8. |Norm;(k)|/|Ps(k)| is the number of all different elements in the truss of k which have the same normali-
zer symmetry group Norm;_q1(k), i=1,...,s;

9. (Burnside’s lemma) m 20653 |K7| is the number of trusses, it is equal to the average number of
points fized per group element.

Let H be a subgroup of S, , then we will call an element k& H -symmetric if Ps(k) D H and strictly
H -symmetric if Ps(k) = H. An element &k will be called:

o middle symmetric, if Ps(k) D S,_1;
o semisymmetric, if Ps(k) D A, ;
o symmetric, if Ps(k) # {¢};

o asymmetric, if Ps(k) = {i};

totally symmetric, it Ps(k) =5, .
If n =2 we have full system of names, namely an element % is called

totally symmetric, if Ps(k) = Ss; ITr(k)| = 1;

semisymmetric, if Ps(k) D As; |Tr(k)| = 1,2;

middle symmetric, if Ps(k) D { |=1,3
left symmetric, it Ps(k) D {¢,r};  |Te(k)| =1,3;
right symmetric, if Ps(k) 2 {¢, ¢}; |=1,3;

One-sided
symmetry

asymmetric, if Ps(k) = {¢} |Tr(k)| = 6.

Corollary 1. Let H be a normal subgroup of S, . Then every element from K being parastrophic to an H -
symmetric element is H -symmetric; all their normalizer groups coincide with S, ; and the number of these
elements is equal to |Tr(k)| = (n+ 1)!/|H| .

For example, let k be a strictly semisymmetric element, that is Ps(k) = A, . Since A, is a normal
subgroup of S, , then Norm(k) = S, . That is why the truss Tr(k) has two elements k¥ and ?k and A,
is the parastrophic symmetry group for both & and (k. If k is asymmetric, i.e. Ps(k) = {¢}, then Tr(k)
containg (n 4 1)! different elements and all of them are asymmetric.

Example 1. Let S, act on a set M and suppose
Ky = {1, (12)(34), (13)(24), (14)(23)}

is the parastrophic symmetry group of an element k € M . Since the group K, is normal in Sy, then there are
4 different elements in the orbit Tr(k) and the parastrophic symmetry group of each of these elements is equal
to K4 .

Some main actions of S,

Relations and reloids

An action of S,, on a set of n-ary relations. Let @ be a set that is called a carrier or an underlying

set and p be asubset of Q" :=Q X Q X --- X @, then p is called an n -ary relation on @ . Denote
—_——

n times
% :={(a16,. -, no) | (a1,...,a,) € p}. (6)

Theorem 2. An assignment (o, p) — %p defines an action of S, on the set of all n-ary relations defined on

Q.

Proof. Let p be an arbitrary n-ary relation on @ and o,7 € S, , then

(%p) = {(@10s- -5 no) | (a1,-. . an) € p} = {(@1roy- -, anro) | (a1,...,an) € p} =7%.
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An action of S, on a set of n-ary reloids. Let R := (Q;p) be an n-ary reloid, i.e., @ is a set and
p C Q™. A pair °R = (Q;°) is called a o -parastrophe of R.

Theorem 2. implies the following statement: “A mapping (J, R) — °R defines an action of S, on the
set of reloids which are parastrophic to R”.

An action of S,, on some sets of classes of n-ary reloids. Let R be a class of n-ary reloids and 7R
be a class of all reloids every of which is a o -parastrophe of a reloid from 2R . A mapping (o, i)%) — 7R defines
an action of S,, on the set of reloid classes that are parastrophic to .

An action of S, on propositions from the language of a class of n-ary reloids. Let R be a class
of n-ary reloids and £ be its language. Then o -parastrophe °P of a proposition P is a proposition obtained
from P by replacing all appearances of the relation symbol p with its o' -parastrophe "qp.

If we replace in a proposition P the symbol p with its o~ !-parastrophe ° p, next in the obtained
proposition °P we replace the symbol p with its 7! -parastrophe ™ p, then we obtain a proposition 7 (7P) .

It is the same when we replace the symbol p with © (" p) = "™ ) in the proposition P . Consequently,
T (O’P) —Top .
Thus, a mapping (o, P) — °P defines an action of S,, on the set of all propositions from L.

An action of S,, on concepts. Let a concept k be defined by a proposition P. A concept °k which is
defined by the proposition °P is called a o -parastrophe of k. It is easy to verify that the assigning (o, k) — %
is an action of S,, on the set of all concepts.

An action of S,, on classes of n-ary reloids. Let 2 be a class of n-ary reloids and °2 denote a class
of all o -parastrophes of reloids from the class 2. It is easy to see that
T(”Q[) =79 forall T,0 € S,.
The relationship implies that an assigning (o,2) — 220 is an action of the group S, on the truss
Tr(A) :={"A| o € Sy}
Theorem 3. A proposition P is true in a class of reloids A if and only if °P is true in the class A .

Proof. Let (Q;p) be arbitrary reloid from 2 and P(p) be a true proposition in 2. Since
p=7 (°p) = ', where 0 := °p. Then P(° 6) is true proposition in 2, ie., °P is true propositi-
onin 2. a

Corollary 2. Let P be true in a class of reloids 2 and let Ps(A) be the group of parastrophic symmetries of
A, then °P is true in A for all o € Ps(A).
Identities. Two identities are called

1. equivalent, if they define the same variety;

2. primaryly equivalent, if one of them can be obtained from the other by a composition of primary
transformations (primaryly equivalent identities are equivalent);

3. o -parastrophic, if one of them can be obtained from the other by o -parastrophic transformation;
4. parastrophic, if they are o -parastrophic for some o € Ss;

5. o -parastrophically equivalent, if they define o -parastrophic varieties (according to Theorem 3., o-
parastrophically equivalent identities define o -parastrophic varieties);

6. parastrophically equivalent, if they are o -parastrophically equivalent for some o € Ss;

7. o -parastrophically primary equivalent, if one of them can be obtained from the other by a composition of
primary transformations and o1, o2, ..., o parastrophic transformations such that oi02...0, = o
for some k € N;

8. parastrophically primary equivalent, if they are o -parastrophically primary equivalent for some o € S3 .
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Functions and groupoids
Recall that an n -ary function is a mapping f: Q™ +— @ . From another point of view, f can be considered
as (n+ 1) -ary relation:
((ﬂl, ey, Ty, CEn+1) € f = f(l‘h R ,iL’n) = Tp+1-

A property which select functions among relations is the following;:
(1, Znyy) €EF N (T1,...,2n,2) €E f= y=2z.

It is called functional property.

For every 1 =1,...,n a superposition @ of two relations is defined as follows:
3
(a1,...,ai—1,b,ai,...,ap_1,¢) € QD p:&
7
(Ela) (ala s 7a‘i—1,b7 gy - - - 7an—17a) cp A (a’17 sy @i—1,0, G4, ... 7an—1ac) € p. (7)

Let [i] := (i,n+ 1), then a relation p will be called i -invertible, if
hop=pollh=e, i=12...n,
1 1
where e; := {(a1,...,a;-1,0,a;4,...,04p_1,a) | Q1,...,0;-1,0,0;,...,an—1 € Q} and is called i -th selector. An
(n + 1) -ary relation is called invertible if it is i-invertible for all i =1,2...,n.

Proposition 1. Let R, 1 be the set of all (n+ 1) -ary relations defined on a set Q. For every i =1,...,n
the algebra (Rp41;@,€;) is a monoid whose group of invertible elements is the set of all i -invertible relations;
1

besides every i -invertible (n + 1) -ary relation f is an i-invertible n -ary function and Uf is its inverse in
the monoid (it is called i-th division of f ).

Proof. Let arelation f be i-invertible for some 7 =1,...,n+ 1. i-invertibility implies f @ [ilf = e, . Let
K3

ai, ..., Gp_1, a, b, ¢ be arbitrary elements from the underlying set () such that
(al, e, 01,0, ai,...,an_hb) ef A (al,. ey Qi—1, A, Ay ,an_l,c) e f.

According to definition of a parastrophe of a relation we have

(a1, ... ai—1,b,a5, ... an_1,0) € Uf A (ay,...,ai_1,a,ai,...,an_1,¢) € f.
It means that (a1,...,a;-1,b,a;,...,apn_1,¢) € f® lilf = ¢;, so b=c. Therefore, f is an n-ary operation.
It is easy to verify associativity of @© and th;t Mf(al, ceey@i—1,b,a4, ... a,_1) is the unique solution of
the equation '
flar,...;a;-1,2,a4,...,an—1) = b.

d

An action of S, on a set of n-ary operations. Let @ be a set and f be an n-ary operation, i.e.,
f: Q" — Q. Define ° as follows

(7($17-~-axn) = f(xlafla---vxnofl)v o€ Sy (8)

A mapping (o, f) — °f defines an action of S, on the set of all n-ary functions defined on @ . In this case,
i.e. 0 €S,, the operation % is called a principal parastrophe of f.

It is easy to see that this action is a special case of the action of S,, as a subgroup of S,4+1 on the set of
all (n+ 1) -ary relations with the (n 4+ 1)-functional property.

An action of S, 11 on a set of n-ary invertible operations (quasigroup operations). Let Q be a
set. An n-ary invertible operation f is called a quasigroup operation as well.
The definition (8) for a o -parastrophe °f of an n-ary operation f can be rewritten as follows:

(Tf(xlaw”yxnn) :I(n+1)0' = f(xlv"'a'rn) = Tn+1, (S Sn+1- (9)

A mapping (o, f) — °f is an action of the group S,+1 on the set A,, of all invertible n -ary operations defined
on @, since it is a partial case of the action S,411 on R,4q.
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Action of S,1; on n-ary quasigroups. A groupoid %A := (4; 7) is called a o -parastrophe of a quasigroup
A:=(4;). (0;A) — %A is an action of S,41 on {TA |7 € Sp11} =Tr(A).
If n =2 we have a well-known classification. Namely, a binary quasigroup A := (4;-) is

totally symmetric, if Ps(A) = Ss; Ty = yx,
T TY = Y;
semisymmetric, if Ps(A) O As; X yr =y;
g £ | commutative, it Ps(A) D {¢,s}; zy = ya;
‘s £ | left symmetric, it Ps(A) 2 {v,r}; z-zy=uy;
g % right symmetric, it Ps(A) 2 {v,0}; zy-y=ux;
asymmetric, if Ps(A) = {¢}

An action of S,;; on classes of n-ary quasigroups. Let 2 be a class of n-ary quasigroups and 2
denote a class of all o -parastrophes of quasigroups from the class 2. It is easy to see that

T(UQ() =77 for all 7,0 € Sp41-
Tt implies that an assigning (o,2) — ?2( is an action of the group S,41 on the truss Tr(2A).
Bunches

A parastrophically closed semi-lattice of classes of quasigroups will be called a bunch. A bunch of a reloid
2l is said to be a set of all parastrophes of 20 and all their finite intersections.

Consider a bunch of a class 2 of binary quasigroups. It consists of the following classes:

1. the set of all parastrophes of the class 2, i.e. the truss of 2 :
Te2l = {2, A, ‘A, A A AL,
2. the set of all pairwise intersections of the classes from Tr2l i.e
{"AN A | 7,v € Ss};

3. the set of all triple-wise intersections of the classes from Tr2l, i.e

{mAN2AN3A | vy, va,v3 € S3};
4. the set of all quadruple-wise intersections of the classes from Tr2, i.e

{"AN2ANBANAA | vy, 02,3, 04 € S3};
5. the set of all quintuple-wise intersections of the classes from Tr2(, i.e
{MAN2ANANAANSA | vy, 09, V3,14, V5 € S3};
6. the intersections of all classes from Tr2l, i.e
AN AN ANTAN AN A
The bunch of binary loops

Neutral elements and loops. Let (Q;f) be an n-ary quasigroup. An element e of the quasigroup is said
to be:

1. (¢,7) -neutral, if
flxoy .y xp1) = T,
where z; = z; and z) = e for all k such that i,j # k € 0,n. In this case, (zg,...,x,) is called a
defining sequence;

. wnilateral, if it is (¢, 7) -neutral for some (i, j) ;

7

2
3. neutral, if it is (4,7) -neutral for all pairs (4,5) such that 0 <i,j <n—1;
4

. totally neutral, if it is (4, j) -neutral for all pairs (i,j) such that 0 <i,7 <n.
If (zg,...,2,) is a defining sequence in a quasigroup, then (zos,...,Zns) is a defining sequence in its o -

parastrophe. So, if an element e is (i,j)-neutral in a quasigroup, then it is (ic=!,jo~!)-neutral in its o -
parastrophe. Therefore, the concepts of ‘unilateral element’ and ‘totally neutral element’ are totally symmetric.

For example, neutral element in a Boolean group is totally neutral and each element in a ternary quasigroup
(Q; f) which is defined on a Boolean group (Q;+) by f(x,y,2) =2+ y+ z, is neutral.
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Neutrality for binary quasigroups. In binary case (n = 2) there are three defining sequences (e, z,z),
(z,e,x), (x,z,e) of neutrality. So, in an arbitrary binary quasigroup (Q;-) one can define three types of
neutrality: 1-neutral (left neutral) e-x = x, 2-neutral (right neutral) = -e =z and 3-neutral (middle neutral)
z-x = e. A quasigroup with a unilaterally neutral element is called a wunilateral or one-sided loop. A middle
neutral element is also known as unipotent element.

To prove general properties of neutral elements we have to formulate a general definition which is a partial
case of the definition for n-ary quasigroups. Namely, an element e of a quasigroup A := (Q;-) is called:

1. i-neutral if the equality x, - x93 = w3 is true, where z; = e and the other two variables coincide, and
unilaterally neutral, if it is ¢ -neutral for some ¢ =1,2,3;

2. {i,7} -neutral if it is i-neutral and j-neutral and two-sided neutral, if it is {i,j} -neutral for some
i,j=1,2,3;

3. totally neutral, if it is ¢ -neutral for all ¢ =1,2,3.

Proposition 2. If an element e is i -neutral in a loop A, then it is ic~' -neutral in A for all i = 1,2,3.
Every parastrophe of a unilateral loop is a unilateral loop. Every unilateral loop A has exactly one neutral
element. The element is neutral in all parastrophes of A.

Proof. Let e be an i-neutral element in a loop A. It means that the equality x; - zo = x3 is true, where
z; = e and two another variables are equal. This equality is equivalent to zi, 7 Toy = T3, according to the
definition of o -parastrophe. Since e = x; = (j,-1), , then the element e is ic~!-th neutral in 4.

Let an element e be i-neutral in A and €’ be j-neutral in A, then €’ is jo-neutral in A.If jo =1,
then e =¢’ since A is a quasigroup. If jo # i, we consider the permutation

1 2 3 .
T = < i ok >, where {i,jo0,k} ={1,2,3}.

1 1

Using just proved assertions, the element e is 77! -neutral and e’ is jor~!-neutral in 7A. Since it~! =1
and jor~! =2, then e is left neutral and €’ is right neutralin 74, so e =¢’. a
Thus, an element with a property of neutrality is unique and the same is true for all parastrophes. But it
can be one-sided, if it has at least one of the properties of neutrality (left, right, middle), two-sided if it has at
least two of these properties or three-sided (totally neutral) if it satisfies all properties of neutrality.
The following table shows what kind of neutrality an element has in parastrophes of a quasigroup A, if it
is left neutral or left-right neutral in A.

A A U A STA sS4
one-sided | 1-neutral | 2-neutral | 3-neutral | 1-neutral | 2-neutral | 3-neutral
left right middle left right middle
two-sided 12-neutral 13-neutral 23-neutral
left-right neutral left-middle neutral | right-middle neutral

‘ three-sided | 123-neutral, i.e. totally neutral ‘

Therefore

Corollary 3. There exist seven varieties of loops:

] The bunch of varieties of loops ‘

the varieties £ (=79 e (=°7L) e (=°0)

of one-sided 1-loops, i.e. 2-loops, i.e. 3-loops, i.e.
loops left loops right loops middle loops

the varieties £nsg gntg seNig

of two-sided | 12-loops, i.e. 13-loops, i.e. 23-loops, i.e.
loops left-right loops | left-middle loops | right-middle loops

pte=yly | ste=y-y zir=y-y

the variety gnsen’e

of three-sided total loops, i.e. unipotent loops
loops Py =y, yr*=y

Note that a left-right neutral element are traditionally called neutral or an identity element.
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The varieties in the same row are parastrophic, therefore their parastrophic symmetry groups are conjugate
according to p. 3 of Theorem 1.. Indeed,

feng)="enke="enve="ene="¢cn’s,

Tensg)="gnTge=2gnse =gne.

It is easy to varify that
(ensenie)=gnsen’e, forallo e Ss.

All of these concepts are pairwise parastrophic. Indeed, according to Proposition 2., 12-neutral element in a
quasigroup A is 13-neutral element in "4 and 23-neutral element in “A.

An example of parastrophic propositions. Consider a well-known proposition P: ‘Every quasigroup is
isotopic to a left-right loop (=loop)’. And let us find all its parastrophes. The concept of ‘quasigroup’ is totally
symmetric because every parastrophe of a quasigroup is a quasigroup; if quasigroups are isotopic then their
o -parastrophes are isotopic as well, so isotopy is totally symmetric. As we have shown above, the concept of
two-sided loops is middle symmetric. Thus, we have three different parastrophes of P :

o ‘P ‘Every quasigroup is isotopic to a right-middle loop’;
e "P: ‘Fvery quasigroup is isotopic to a left-middle loop’.
Thus the following theorem is true.
Theorem 4. 1. Every quasigroup is isotopic to a left-right loop (=loop):

zoy=R(z) Ly (y),  e=ba=R,(b) = Ly(a);
2. Every quasigroup is isotopic to a right-middle loop:

voy=R (2 M), e=RyMe) = M ()

3. Every quasigroup is isotopic to a left-middle loop:

xoy:Lgl(JWC(x)y)., e= M "(a) =L, (c);

4. a quasigroup (Q;-) is isotopic to a unipotent loop if and only if it has elements a,b such that
My, =L, 'R, :
zoy= R, (z) Ly (y).

Examples of bunches. Here we cite some of well-known trusses and bunches of quasigroup varieties.
Example 2. The bunch of all loops consists of seven varieties (see Corollary 3.).

Example 3. The bunch of distributive quasigroups consists of one totally symmetric variety.

Proof. Because every parastrophe of a distributive quasigroup is also distributive [14]. a

Example 4. The bunch of all groups consists of four varieties:
e variety of groups, TY -z =T - Yz ;
o variety of left division of groups, xy -2y = xz ;
e variety of right division of groups, xy-xz =yz;

o variety of Boolean groups xy - yz = xz .
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Proof. Let & be the variety of all groups. The class ‘@& of all left divisions is the class of all quasigroups

(Q; e) such that (Q;-) belongs to & . According to Theorem 3., the class ‘@ is described by £-parastrophe of
associativity. Since ¢? = ¢, then it is the identity

@'y iz=al(ya).

. . s L 2NV .
Let us use the primary identities. Denote v :=y-z, then y = vz;and u:= (z-y) -z implies x = uz-y = uz-vz.
Therefore, the identity can be written as

u:(uz-vz)?v.

Applying a primary identity, we obtain uz - vz = wv. Analogously one can show that the class "® can be
described by zy - xz = yz . According to Theorem 3., the variety °® is described by

(@ y) z=a"(y"2).

As z° y = y - x, this is the identity of associativity. Therefore, *® = & . It means Ps(®&) O {i,s}. Let
4 r
(Z;+) be the group of integers. Then the quasigroups (Z;+), (Z;+), (Z;+) are pairwise different because

¢
the operations (+), (), (*) are different. These statements follow from the equalities

[
2+3 =5, 2+3=2-3=-1, 24+3=3-2=1.

Thus, 6 = &, ‘6 = "6, "6 = *‘G are pairwise different varieties and Ps(®) = {1,s}. An intersection of
any two of them gives the variety of Boolean groups. a

Identities and functional equations
The concept of ‘identity’ can be divided into two parts:

1. a proposition, for example, in the real number group (R;+), the following identity is true

(Vo) (Vy)(V2) (z+y)+z=2+(y+2); (10)
2. a predicate, for example, the class of all semigroups is defined by the following identity

(Vo)(Vy)(V2) (z+y)+2z=2+(y+2); (11)

In 1) the symbol + denotes a fixed operation, namely addition of the real numbers, but in 2) the symbol
+ denotes a functional variable. We need to distinguish the concepts. Therefore, we keep the name ‘identity’
only for (10), and (11) will be called a functional equation. For giving exact definitions we remember the concept
of a term.

Terms and words. Let @ be a set which will be called carrier or underlying set. Let
e OQ:={a,b,cay,...} beasetof fixed elements from @ (individual constant);

o F:={f,g,h, f1,[2,...} aset of functional symbols which denote one and only one operation defined on
Q) (functional constant);

o X :={z,y,x1,22,...} aset of individual variables representing the elements from Q ;
o F:={F,F,Fy,...} bea set of functional variables.

Definition of a term:
1. every variable from X and every individual constant from Q are tems;

2.if f € F is an n-ary function, F' € § an n-ary functional variable and 77, ..., T, are terms, then
fIy,....,T,), F(Ty,...,T,) are terms;

3. no terms exist other than those implied by the previous rules.
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A term is called a word, if it has no functional variable. Let T be a term then [T] and (T') denote the sets of
all individual and functional variables appearing in T respectively.
Let [T1)U[Ts] :={z1,..., 2} and {F1, Fs,...,F} C (T1) U (Ts), then the formula

(VF)(VF) ... (VFy)(Vo1) (Vo) . .. (Vo) (T = T3) (12)
is called a wuniversal (quantified) equality. We will denote it without quantifiers.

Definition 1. A universal equality (12) is called a functional equation on @ if it has at least one free functional
variable, otherwise it is called an identity if it is true and a contradiction if it is false.

For example, let F} be unary and F3 be binary real functions defined everywhere, then
(VF1)(VF5)(Vx) (YY) (Vz) ((F1 () + sin x) + F5(z,y) = Fi(z) + (sinx + F3(z, y)))
is an identity on real numbers. In this formula (+) is binary and sin is unary functional constant.

Definition 2. A functional equation is called pure, if it has neither functional constant nor individual constant.

Definition 3. A wvalue of lexicographic sequence of all free functional variables of the given functional equation
is called its solution, if the equation becomes an identity after substituting of the solution for functional variables.

Pure functional equation can be considered on every carrier and on every carrier it has some set of solutions.
So, a solution of a pure functional equation is a pair: a carrier and a sequence of functions defined on the carrier.
Therefore, all solutions of a pure functional equation form a class of algebras. The class is called a variety and
the functional equation is called an identity which describes the variety.

Definition 4. A formula (12) is called a universal quasigroup equality if its both functional variables and
functional constants present quasigroup operations.

A primary quasigroup super-identity is a pure quasigroup identity which follows from the definition of an
invertible operation and its parastrophes. For binary case, these identities are the following:

U(TF) =7F, SF(mMy) = F(y,x),
EF(F('ray)vy) =7, F ZF('rvy)vy) =z,
{L‘,TF(ZL',y)) =Y, (13)

“F(z,F(y,2) =y, F(F(x,y),2)=y,

"F(z, F(z,y) =y, F

STF(F(y7I)7y) =z, F y7er(x7y)) =T

Definition 5. Two functional equations are said to be equivalent on a carrier if they have the same set of
solutions on the carrier. Two pure functional equations are called equivalent if they are equivalent on each
carrier.

Following Sade [11], an operation will be called diagonal, if f(z;z) is a permutation of the carrier set. A
binary functional variable will be called diagonal, if it presents diagonal operations.
Two functional equations are said to be parastrophically primarily equivalent, if one can be obtained from
the other in a finite number of the following steps:
1) application of quasigroup superidentities (13);
2) changing sides of the equation;
3) renaming individual variables;
4) renaming functional variables.

Two functional equations are said to be diagonaly parastrophic, if one can be obtained from the other in a
finite number of the following steps:

1) application of quasigroup superidentities (13);
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2) changing sides of the equation;

)
3) renaming individual variables;
4) renaming functional variables;
5) replacing a sub-term F(z;x) with dp(x),if F is a diagonal functional variable and vice versa.
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IIAPACTPO®HA CUMETPIS B TEOPII KBA3ITPVII

Coxanpkuii ®.M.
PE3IOME

VY uiit crarTi Buaineno Jekisbka npobiem reopii kBasirpymmn. OcobsmBa yBara mpualisieTbes mpobiemi na-
pactpodHol cumerpii. Jano o3HaveHHsT MapacTpOPHUX BIIHONIEHD HA: BIJHONTEHHAX Ta OMEPAIisiX, MHOTOBHIAX
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KBa3irpym, TBEPIKEHHAX, KBA3irPYIOBUX TOTOXKHOCTSIX, MOHATTIAX B TeOpii KBa3irpyn Toirno. Ak mpukaam, Ha-
BeJIEHO MapacTpodHO 3aMKHYTHil HAbIp MOHSATH OJHOCTOPOHHIX HEHTPAIBLHUX €JIEMEHTIB, & TAKOXK BiJIMOBIIHUX
MHOTOBH/IIB.

Karmnoei caoea: KBazirpymna, Jiyma, CAMETDist, HeHTPAJbHUHN €JIEMEHT, TapacTpod, MHOTOBU/I, Ty 90K, B’ s3Ka,
TOTOTOXKHICTD, (DYHKIIIHHE PIBHSIHHA.

ITAPACTPO®HAA CUMMETPUA B TEOPUN KBA3UT'PVYIIII

Coxankuii ®.M.

PE3IOME

B 370i1 cTaThe BbIIETIEHO HECKOIBKO MpobsieM B Teopun KBasurpyi. Ocoboe BHUMAHNE yIeseTcs mpodJe-
Me mapacTpodHOH CAMMETPHN: JAHO OMpeIeseHre HapacTpoHUN Ha: OTHOIIEHUAX M OMEePaIlnaX, MHOroobpa-
3UsIX KBA3UIPYIII, YTBEPXKIEHUEX, KBASUIPYIIOBLIX TOXKAECTBAX, HOHATHAX B TEOPUH KBAa3UIpPyI M Ipodee. B
Ka4yecTBe IIPUMEPA, PUBEAEH IapacTPOgdpHO 3aMKHYThIH HAOOP MOHATUN OIHOCTOPOHHUX HEMTPAaJIbHBIX 3JIeMEH-
TOB, & TaKYKe COOTBETCTBYIOIINE MHOTOOOPA3USI.

Karuesvie ca066: KBA3UTPYIINa, JyIa, CHMMETPHs, HENTPAJILHBIN eJIeMeHT, mapacTpod, MHOroobpasue,
My90K, BA3KA, TOKIECTBO, (PYHKIIMOHAIBHOE YPABHEHUE.
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