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PARASTROPHIC SYMMETRY IN QUASIGROUP THEORY

In this article some problems in quasigroup theory are emphasized. Special attention is devoted to
parastrophic symmetry. De�nitions of parastrophy are de�ned on: relations and operations, quasigroup varieti-
es, propositions, quasigroup identities, concepts in quasigroup theory and etc. As an example, parastrophically
closed set of concepts of one-sided neutral elements as well as the corresponding varieties are given.
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Introduction
The quasigroup theory has some di�erent directions of investigation: combinatorial (Latin squares, cubes

and hypercubes,. . . ), algebraic (classes of quasigroups, homomorphisms, subquasigroups,. . . ) geometrical (webs,
con�gurations, . . . ) and so on. Here, in this article, we pay your attention to a direction which can be called a
function direction or a function method.

Every n -ary quasigroup can be de�ned as a pair (Q; f) , where Q is a set called carrier and f is an
invertible n -ary operation de�ned on Q . `Invertible' means that f is an invertible element in i -th symmetric
monoid (Ωn;⊕

i
) for every i = 1, . . . , n , where ⊕

i
is called i -th multiplication or i -th Mann superposition of

n -ary operations and is de�ned by(
f ⊕

i
g

)
(x1, . . . , xn) := f(x1, . . . , xi−1, g(x1, . . . , xn), xi+1, . . . , xn). (1)

Note when n = 1 , the set of invertible operations coincides with the set of permutations of Q . But if n > 1 ,
the set of invertible operations does not form a subgroup in any of the monoids (Ωn;⊕

i
) .

Composition, that is consecutive application of multiary functions, is a binary operation on unary functions,
but it is not an operation on multiary functions because arity of the composition is not de�ned. That is why
superpositions are operations which are certain restrictions of the composition.

Now we give a very short information about directions of the investigation of invertible functions of di�erent
arities.

Problem 1. What is the most convenient algebra of functions for the study of invertible operati-
ons? Only repetition-free composition of invertible operations is invertible. From this point of view, it
is convenient to study bi-unary semigroups (Φ; ∗, ξ, τ) , where ∗, ξ, τ are taken from the signature of Post
algebras [9]; or position algebras [5].

Problem 2. Conditions under which a repetition composition of invertible operations is invertible.
For Mann superpositions of binary operations the question was answered by V.D. Belousov [2], and for multiary
functions it has been solved in [14].

For every σ ∈ Sn there exists a unary superposition called σ -parastrophism. σ -parastrophe of an inverti-
ble operation is invertible. The author does not know any results concerning other superpositions.

Problem 3. Parastrophic symmetry relations in quasigroup theory. Every parastrophe of a quasigroup
is a quasigroup, i.e., the class of all quasigroups is parastrophically closed. Hence, every concept given for all
quasigroups is given for all pairwise parastrophic quasigroups. From a di�erent point of view, a concept for a
quasigroup transforms into another concept in each parastrophe of the quasigroup. These concepts are said to
be parastrophic. It means that de�ning a concept in the class of all n -ary quasigroups we de�ne n! parastrophic
concepts simultaneously. Since Sn+1 de�nes an action on the set of all quasigroup operations with a �xed carrier
and the concepts based on quasigroup operations, therefore we can de�ne an action of Sn+1 on arbitrary set
of pairwise parastrophic concepts. These actions will help us to improve quasigroup theory. For example, to

70



ISSN 1817-2237. Âiñíèê ÄîíÍÓ. Ñåð. À: Ïðèðîäíè÷i íàóêè. - 2016.- � 1-2

give an answer to the following questions: What dependencies exist among parastrophic concepts? How many
of parastrophic concepts could be di�erent? Analogical questions arise about propositions, varieties, and so on.

As an example, we analyse the notion of one-sided, two-sided and three-sided neutrality of an element in
a quasigroup and the corresponding varieties.

Another approach to parastrophic symmetry one can �nd in [12].

Problem 4: Description of parastrophically irreducible identities (functional equations). An
identity is said to be: reducible, if it is equivalent to a conjunction of identities of shorter lengths; parastrophically
reducible, if at least one of parastrophes of the identity is reducible. For example, it is proved [15] that every
quadratic quasigroup identity in n > 4 individual variables is reducible.

Problem 5: Description of relations between isotopy and isomorphy in di�erent classes of quasi-
groups. For example, 1) if two inverse property loops are isotopic then they are pseudo-isomorphic [14]; 2)
if two commutative inverse property loops are isotopic then they are isomorphic [14]; 3) a loop has isotopy-
isomorphy property (all loops being isotopic to it is isomorphic) if and only if every its element is left and right
companion of its pseudo-automorphism.

Problem 6: Let K1 and K2 be two classes of functions. The study of presentations of functions
from K1 as compositions of functions from K2 . The following sub-problems can be highlighted in this
problem:

• possibility � when a function from K1 can be presented as a composition of functions from K2 ?

• uniqueness � what dependencies exist among the presentations of the same function?

• canonicality � is there some type of presentations which always exists and unique in some sense?

• tools of investigation � what dependence exists between an investigation tool of a function and the
corresponding tool of its presentation components?

We cite a few examples of the results.

Possibility. 1. Belousov's theorem: Every distributive quasigroup is linearly isotopic to a commutati-
ve Moufang loop [14]); 2. Bruck-Toyoda theorem: every medial quasigroup is linearly isotopic to an Abelian
group [10]; 3. Every n -ary partially associative quasigroup is a polynomial in an algebra (Q; +, g, φ, a) , where
(Q; +) is a group, φ its automorphism, (Q; g) is a multiary quasigroup [1, 13]; 4. A.N. Kolmogorov [7]: Every
multiary real continuous function is presentable as a composition of unary real continuous functions and the
addition.

Uniqueness. A.V.Kuznetsov [8]: 1. Every two full repetition-free decompositions of boolean function
without dummy variable are almost the same. In [19] the result was obtained for functions de�ned on three-
element sets. For arbitrary power sets it is proved that the corresponding components of two full repetition-free
decompositions of a quasigroup are isotopic [1] and the decompositions are almost identical [18].

Tools of investigation. Two distributive quasigroups being de�ned on the same Moufang loop are
isomorphic if and only if their de�ning automorphisms are conjugated by an automorphism of the Moufang
loop [14].

Problem 7: Description of functional equations on quasigroup operations. A functional equation is
called generalized if all its functional variables are pairwise di�erent. Therefore, some properties being true for
generalized functional equations are true for all functional equations. We de�ne equivalence relation on functional
equations: two of them are equivalent if one of them can be obtained from the other in a �nite number of some
�xed transformations. These transformations preserve continuity and order. Functional equations belong to the
same class, if their solutions are mutually expressible.

Problem 8: To establish relationships between decomposition of multiary functions and
orthogonality. Using repetition-free compositions and other type of compositions of multiary functions, one
can construct algorithms which construct tuples of orthogonal operations [4, 3, 20, 6],
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Problem 9: Functional equations and continuous mathematics. Every composition of continuous
functions is continuous. Therefore, all results obtained for quasigroups using composition are true for topological
quasigroups. Since topological groups on real space with the standard topology are topologically isomorphic
and continuous invertible functions are monotonic, then all solutions of functional equations on the set of all
topological invertible real functions are expressed by monotonic functions and the addition of real numbers [16].

Problem 10: Functional equations and discrete mathematics.

Preliminaries
A subset ρ ⊆ Qn := Q×Q× . . .×Q︸ ︷︷ ︸

n times

is called an n -ary relation de�ned on Q . An n -ary relation is

called functional, if the �rst n− 1 element uniquely de�nes the n -th one, i.e.

(a1, . . . , an−1, b) ∈ ρ ∧ (a1, . . . , an−1, c) ∈ ρ ⇒ b = c.

In this case, the following relation is assumed to be true:

(a1, . . . , an−1, b) ∈ ρ ⇔ ρ(a1, . . . , an−1) = b.

If, in addition, for every a1, . . . , an−1 ∈ Q there exists b ∈ Q such that ρ(a1, . . . , an−1) = b , then ρ is called
an (n− 1) -ary operation and it can be considered as a mapping of Qn−1 to Q .

So, in particular, a relation ρ is invertible or a quasigroup relation, or a quasigroup operation if in a formula
(x1, . . . , xn−1, xn) ∈ ρ arbitrary values of arbitrary n−1 variables uniquely de�ne a value of the n -th variable.
Evidently, this property is invariant under arbitrary permutation of the variables x1 , . . . , xn−1 , xn .

Let Ωn(Q) be the set of all n -ary operations de�ned on Q . n associative superpositions ⊕
1
, . . . , ⊕

n
are

de�ned on Ωn(Q) by(
f ⊕

i
g

)
(x1, . . . , xn) := f(x1, . . . , xi−1, g(x1, . . . , xn), xi+1, . . . , xn), i = 1, . . . , n. (2)

Monoid (Ωn(Q);⊕
i
) is called i -th symmetric monoid of n -ary operations. An n -ary operation is called i -

invertible, if it is invertible in the i -th symmetric monoid, i.e., their exists an operation [i]f , called an i -th
inverse operation, such that

f ⊕
i

[i]f = ei,
[i]f ⊕

i
f = ei, (3)

where ei(x1, . . . , xn) := xi and ei is called i -th selector. So, f is i -invertible, if the following identities (we
will call them primary identities)

f(x1, . . . , xi−1,
[i]f(x1, . . . , xn), xi+1, . . . , xn) = xi

[i]f(x1, . . . , xi−1, f(x1, . . . , xn), xi+1, . . . , xn) = xi.
(4)

hold for some operation [i]f . An n -ary operation is called invertible, if it is invertible in every symmetric
monoid of n -ary operations:

(Ωn(Q);⊕
1
), . . . , (Ωn(Q);⊕

n
).

In other words, f is invertible, if it has i -inverse operation for every i = 1, . . . , n . Note, the full sequence [1]f ,
. . . , [n]f of inverse operations is uniquely de�ned.

An n -ary operation f is called an i -quasigroup operation, if for every a1 , . . . , an , b the equation

f(a1, . . . , ai−1, x, an+1, . . . , an) = b (5)

has a unique solution in Q . An assigning to every (a1, . . . , ai−1, b, an+1, . . . , an) the solution of (5) is an n -
ary operation. It is easy to verify that this operation is exactly i -inverse to f , so `quasigroup operation' and
`inverse operation' are the same concept.

An algebra (Q; f, [1]f, . . . , [n]f) is called an n -ary quasigroup, if f is an invertible operation and [1]f ,
. . . , [n]f are its full sequence of inverse operations. Then class of all n -ary quasigroups forms a variety which
is de�ned by primary identities (4).
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Actions. Let Sn denote the symmetric group of the degree n , namely the group of all permutations of the
set 1, n := {1, 2, . . . , n} and let ι denote the identical transformation of an arbitrary set.

Let Sn act on a set K , i.e. for all k ∈ K and for all σ ∈ S3 the element σk belongs to K and equalities

σ(τk) = στk, ιk = k

hold. We adduce some statements which immediately follow from the well-known results of the group action
theory. For this purpose, we introduce some special names and notations.

The relation ∼ being de�ned on K by

k ∼ m ⇔ (∃σ ∈ Sn)
σk = m

is called parastrophic. An orbit of an element k ∈ K will be called a truss of k and denoted by Tr(k) ; stabilizer
group of k will be called a parastrophic symmetry group of k and denoted by Ps(k) ; a stabilizer group of
Ps(k) under the conjugate action will be called a normalizer group of k or a 1-normalizer group of k and will
be denoted by Norm1(1) ; the set of points �xed by g is called a kernel of σ and denoted by Kg . Hence,

Tr(k) := {m ∈ K | (∃σ ∈ G)m = σk}, Ps(k) := {σ | σk = k},

Norm1(k) := {σ | Ps(k)σ = σPs(k)}, Kσ := {k ∈ K | σk = k},

Normi(k) := {σ | Normi−1(k)σ = σNormi−1(k)}, i = 1, 2, . . . ,

Norm0(k) := Ps(k).

In other words,

• a truss Tr(k) of k is its orbit under the action, i.e., the set of all elements which are parastrophic to k ;

• a parastrophic symmetry group Ps(k) of k is its stabilizer group, i.e., the set of all parastrophisms which
does not change the element k ;

• a normalizer group Norm(k) = Norm1(k) of k is a set of all parastrophisms which does not change its
parastrophic symmetry group under the conjugate action;

• a i -th normalizer group Normi(k) of k is a set of all parastrophisms which does not change its (i−1) -th
normalizer group Normi−1(k) under the conjugate action.

Theorem 1. Let n be a natural number and the group Sn act on a set K . Then the following properties are
true:

1. ∼ is an equivalence relation on K and Tr(k) is a block of the corresponding partition of K which
contains the element k ;

2. a parastrophic symmetry group Ps(k) and normalizer groups Normi(k) of an arbitrary element k ∈ K
are subgroups of Sn and there exists s such that

Ps(k) E Norm1(k) E Norm2(k) E · · · E Norms(k) E Sn;

3. parastrophic symmetry groups and normalizer groups of elements from the same orbit are conjugate:

Ps(σk) = σ(Ps(k))σ−1, Normi(
σk) = σ(Normi(k))σ

−1, i = 1, . . . , s;

4. the set of all parastrophisms between k and σk is equal to σ(Ps(k)) ;

5. |Tr(k)| = (n+ 1)!/|Ps(k)| is the number of all di�erent elements which are parastrophic to k ;

6. (n+1)!/|Normi(k)| is the number of all di�erent normalizer groups Normi−1(k) of elements from Tr(k) ;

7. |Norm(k)|/|Ps(k)| is the number of all di�erent elements in the truss of k which have the same
parastrophic symmetry group;
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8. |Normi(k)|/|Ps(k)| is the number of all di�erent elements in the truss of k which have the same normali-
zer symmetry group Normi−1(k) , i = 1, . . . , s ;

9. (Burnside's lemma) 1
(n+1)!

∑
σ∈S3

|Kσ| is the number of trusses, it is equal to the average number of

points �xed per group element.

Let H be a subgroup of Sn , then we will call an element k H -symmetric if Ps(k) ⊇ H and strictly
H -symmetric if Ps(k) = H . An element k will be called:

• middle symmetric, if Ps(k) ⊇ Sn−1 ;

• semisymmetric, if Ps(k) ⊇ An ;

• symmetric, if Ps(k) ̸= {ι} ;

• asymmetric, if Ps(k) = {ι} ;

• totally symmetric, if Ps(k) = Sn .

If n = 2 we have full system of names, namely an element k is called

totally symmetric, if Ps(k) = S3; |Tr(k)| = 1;

semisymmetric, if Ps(k) ⊇ A3; |Tr(k)| = 1, 2;

middle symmetric, if Ps(k) ⊇ {ι, s}; |Tr(k)| = 1, 3;

O
n
e-
si
d
ed

sy
m
m
et
ry

left symmetric, if Ps(k) ⊇ {ι, r}; |Tr(k)| = 1, 3;
right symmetric, if Ps(k) ⊇ {ι, ℓ}; |Tr(k)| = 1, 3;

asymmetric, if Ps(k) = {ι} |Tr(k)| = 6.

Corollary 1. Let H be a normal subgroup of Sn . Then every element from K being parastrophic to an H -
symmetric element is H -symmetric; all their normalizer groups coincide with Sn ; and the number of these
elements is equal to |Tr(k)| = (n+ 1)!/|H| .

For example, let k be a strictly semisymmetric element, that is Ps(k) = An . Since An is a normal
subgroup of Sn , then Norm(k) = Sn . That is why the truss Tr(k) has two elements k and (12)k , and An

is the parastrophic symmetry group for both k and (12)k . If k is asymmetric, i.e. Ps(k) = {ι} , then Tr(k)
contains (n+ 1)! di�erent elements and all of them are asymmetric.

Example 1. Let S4 act on a set M and suppose

K4 := {ι, (12)(34), (13)(24), (14)(23)}

is the parastrophic symmetry group of an element k ∈ M . Since the group K4 is normal in S4 , then there are
4 di�erent elements in the orbit Tr(k) and the parastrophic symmetry group of each of these elements is equal
to K4 .

Some main actions of Sn

Relations and reloids
An action of Sn on a set of n -ary relations. Let Q be a set that is called a carrier or an underlying
set and ρ be a subset of Qn := Q×Q× · · · ×Q︸ ︷︷ ︸

n times

, then ρ is called an n -ary relation on Q . Denote

σρ := {(a1σ, . . . , anσ) | (a1, . . . , an) ∈ ρ}. (6)

Theorem 2. An assignment (σ, ρ) 7→ σρ de�nes an action of Sn on the set of all n -ary relations de�ned on
Q .

Proof. Let ρ be an arbitrary n -ary relation on Q and σ, τ ∈ Sn , then

τ (σρ) = τ{(a1σ, . . . , anσ) | (a1, . . . , an) ∈ ρ} = {(a1τσ, . . . , anτσ) | (a1, . . . , an) ∈ ρ} = τσρ.

2
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An action of Sn on a set of n -ary reloids. Let R := (Q; ρ) be an n -ary reloid, i.e., Q is a set and
ρ ⊆ Qn . A pair σR := (Q; σρ) is called a σ -parastrophe of R .

Theorem 2. implies the following statement: �A mapping
(
σ,R

)
7→ σR de�nes an action of Sn on the

set of reloids which are parastrophic to R �.

An action of Sn on some sets of classes of n -ary reloids. Let R be a class of n -ary reloids and σR
be a class of all reloids every of which is a σ -parastrophe of a reloid from R . A mapping

(
σ,R

)
7→ σR de�nes

an action of Sn on the set of reloid classes that are parastrophic to R .

An action of Sn on propositions from the language of a class of n -ary reloids. Let R be a class
of n -ary reloids and L be its language. Then σ -parastrophe σP of a proposition P is a proposition obtained
from P by replacing all appearances of the relation symbol ρ with its σ−1 -parastrophe σ−1

ρ .
If we replace in a proposition P the symbol ρ with its σ−1 -parastrophe σ−1

ρ , next in the obtained
proposition σP we replace the symbol ρ with its τ−1 -parastrophe τ−1

ρ , then we obtain a proposition τ
(
σP

)
.

It is the same when we replace the symbol ρ with σ−1

(τ
−1

ρ) = (τσ)−1

ρ in the proposition P . Consequently,
τ
(
σP

)
= τσP .

Thus, a mapping (σ, P ) 7→ σP de�nes an action of Sn on the set of all propositions from L .

An action of Sn on concepts. Let a concept k be de�ned by a proposition P . A concept σk which is
de�ned by the proposition σP is called a σ -parastrophe of k . It is easy to verify that the assigning (σ, k) → σk
is an action of Sn on the set of all concepts.

An action of Sn on classes of n -ary reloids. Let A be a class of n -ary reloids and σA denote a class
of all σ -parastrophes of reloids from the class A . It is easy to see that

τ
(
σA

)
= τσA for all τ, σ ∈ Sn.

The relationship implies that an assigning (σ,A) → σA is an action of the group Sn on the truss

Tr(A) := {σA | σ ∈ Sn}.

Theorem 3. A proposition P is true in a class of reloids A if and only if σP is true in the class σA .

Proof. Let (Q; ρ) be arbitrary reloid from A and P (ρ) be a true proposition in A . Since

ρ = σ−1

(σρ) = σ−1

θ , where θ := σρ . Then P (σ
−1

θ) is true proposition in σA , i.e., σP is true propositi-
on in σA . 2

Corollary 2. Let P be true in a class of reloids A and let Ps(A) be the group of parastrophic symmetries of
A , then σP is true in A for all σ ∈ Ps(A) .

Identities. Two identities are called

1. equivalent, if they de�ne the same variety;

2. primaryly equivalent, if one of them can be obtained from the other by a composition of primary
transformations (primaryly equivalent identities are equivalent);

3. σ -parastrophic, if one of them can be obtained from the other by σ -parastrophic transformation;

4. parastrophic, if they are σ -parastrophic for some σ ∈ S3 ;

5. σ -parastrophically equivalent, if they de�ne σ -parastrophic varieties (according to Theorem 3., σ -
parastrophically equivalent identities de�ne σ -parastrophic varieties);

6. parastrophically equivalent, if they are σ -parastrophically equivalent for some σ ∈ S3 ;

7. σ -parastrophically primary equivalent, if one of them can be obtained from the other by a composition of
primary transformations and σ1 , σ2 , . . . , σk parastrophic transformations such that σ1σ2 . . . σk = σ
for some k ∈ N ;

8. parastrophically primary equivalent, if they are σ -parastrophically primary equivalent for some σ ∈ S3 .
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Functions and groupoids
Recall that an n -ary function is a mapping f : Qn 7→ Q . From another point of view, f can be considered

as (n+ 1) -ary relation:
(x1, . . . , xn, xn+1) ∈ f :⇔ f(x1, . . . , xn) = xn+1.

A property which select functions among relations is the following:

(x1, . . . , xn, y) ∈ f ∧ (x1, . . . , xn, z) ∈ f ⇒ y = z.

It is called functional property.
For every i = 1, . . . , n a superposition ⊕

i
of two relations is de�ned as follows:

(a1, . . . , ai−1, b, ai, . . . , an−1, c) ∈ φ⊕
i
ρ :⇔(

∃a
)
(a1, . . . , ai−1, b, ai, . . . , an−1, a) ∈ φ ∧ (a1, . . . , ai−1, a, ai, . . . , an−1, c) ∈ ρ. (7)

Let [i] := (i, n+ 1) , then a relation ρ will be called i -invertible, if

[i]ρ⊕
i
ρ = ρ⊕

i

[i]ρ = ei, i = 1, 2 . . . , n,

where ei := {(a1, . . . , ai−1, a, ai, . . . , an−1, a) | a1, . . . , ai−1, a, ai, . . . , an−1 ∈ Q} and is called i -th selector. An
(n+ 1) -ary relation is called invertible if it is i -invertible for all i = 1, 2 . . . , n .

Proposition 1. Let Rn+1 be the set of all (n+ 1) -ary relations de�ned on a set Q . For every i = 1, . . . , n
the algebra (Rn+1;⊕

i
, ei) is a monoid whose group of invertible elements is the set of all i -invertible relations;

besides every i -invertible (n + 1) -ary relation f is an i -invertible n -ary function and [i]f is its inverse in
the monoid (it is called i -th division of f ).

Proof. Let a relation f be i -invertible for some i = 1, . . . , n+ 1 . i -invertibility implies f ⊕
i

[i]f = ei . Let

a1 , . . . , an−1 , a , b , c be arbitrary elements from the underlying set Q such that

(a1, . . . , ai−1, a, ai, . . . , an−1, b) ∈ f ∧ (a1, . . . , ai−1, a, ai, . . . , an−1, c) ∈ f.

According to de�nition of a parastrophe of a relation we have

(a1, . . . , ai−1, b, ai, . . . , an−1, a) ∈ [i]f ∧ (a1, . . . , ai−1, a, ai, . . . , an−1, c) ∈ f.

It means that (a1, . . . , ai−1, b, ai, . . . , an−1, c) ∈ f ⊕
i

[i]f = ei , so b = c . Therefore, f is an n -ary operation.

It is easy to verify associativity of ⊕
i
and that [i]f(a1, . . . , ai−1, b, ai, . . . , an−1) is the unique solution of

the equation
f(a1, . . . , ai−1, x, ai, . . . , an−1) = b.

2

An action of Sn on a set of n -ary operations. Let Q be a set and f be an n -ary operation, i.e.,
f : Qn 7→ Q . De�ne σf as follows

σf(x1, . . . , xn) := f(x1σ−1 , . . . , xnσ−1), σ ∈ Sn. (8)

A mapping (σ, f) 7→ σf de�nes an action of Sn on the set of all n -ary functions de�ned on Q . In this case,
i.e. σ ∈ Sn , the operation

σf is called a principal parastrophe of f .
It is easy to see that this action is a special case of the action of Sn as a subgroup of Sn+1 on the set of

all (n+ 1) -ary relations with the (n+ 1) -functional property.

An action of Sn+1 on a set of n -ary invertible operations (quasigroup operations). Let Q be a
set. An n -ary invertible operation f is called a quasigroup operation as well.

The de�nition (8) for a σ -parastrophe σf of an n -ary operation f can be rewritten as follows:

σf(x1σ, . . . , xnσ) = x(n+1)σ :⇔ f(x1, . . . , xn) = xn+1, σ ∈ Sn+1. (9)

A mapping (σ, f) 7→ σf is an action of the group Sn+1 on the set ∆n of all invertible n -ary operations de�ned
on Q , since it is a partial case of the action Sn+1 on Rn+1 .

76 Fedir M. Sokhatsky



ISSN 1817-2237. Âiñíèê ÄîíÍÓ. Ñåð. À: Ïðèðîäíè÷i íàóêè. - 2016.- � 1-2

Action of Sn+1 on n -ary quasigroups. A groupoid σA := (A;
σ·) is called a σ -parastrophe of a quasigroup

A := (A; ·) . (σ;A) 7→ σA is an action of Sn+1 on {τA | τ ∈ Sn+1} = Tr(A) .
If n = 2 we have a well-known classi�cation. Namely, a binary quasigroup A := (A; ·) is

totally symmetric, if Ps(A) = S3; xy = yx,
x · xy = y;

semisymmetric, if Ps(A) ⊇ A3; x · yx = y;
commutative, if Ps(A) ⊇ {ι, s}; xy = yx;

O
n
e
-s
id
e
d

sy
m
m
e
tr
ic

left symmetric, if Ps(A) ⊇ {ι, r}; x · xy = y;
right symmetric, if Ps(A) ⊇ {ι, ℓ}; xy · y = x;
asymmetric, if Ps(A) = {ι}

An action of Sn+1 on classes of n -ary quasigroups. Let A be a class of n -ary quasigroups and σA
denote a class of all σ -parastrophes of quasigroups from the class A . It is easy to see that

τ
(
σA

)
= τσA for all τ, σ ∈ Sn+1.

It implies that an assigning (σ,A) → σA is an action of the group Sn+1 on the truss Tr(A) .

Bunches
A parastrophically closed semi-lattice of classes of quasigroups will be called a bunch. A bunch of a reloid

A is said to be a set of all parastrophes of A and all their �nite intersections.
Consider a bunch of a class A of binary quasigroups. It consists of the following classes:

1. the set of all parastrophes of the class A , i.e. the truss of A :

TrA = {A, sA, ℓA, rA, sℓA, srA};

2. the set of all pairwise intersections of the classes from TrA , i.e.

{τA ∩ νA | τ, ν ∈ S3};

3. the set of all triple-wise intersections of the classes from TrA , i.e.

{ν1A ∩ ν2A ∩ ν3A | ν1, ν2, ν3 ∈ S3};

4. the set of all quadruple-wise intersections of the classes from TrA , i.e.

{ν1A ∩ ν2A ∩ ν3A ∩ ν4A | ν1, ν2, ν3, ν4 ∈ S3};

5. the set of all quintuple-wise intersections of the classes from TrA , i.e.

{ν1A ∩ ν2A ∩ ν3A ∩ ν4A ∩ ν5A | ν1, ν2, ν3, ν4, ν5 ∈ S3};

6. the intersections of all classes from TrA , i.e.

A ∩ sA ∩ ℓA ∩ rA ∩ sℓA ∩ srA.

The bunch of binary loops
Neutral elements and loops. Let (Q; f) be an n -ary quasigroup. An element e of the quasigroup is said
to be:

1. (i, j) -neutral, if
f(x0, . . . , xn−1) = xn,

where xi = xj and xk = e for all k such that i, j ̸= k ∈ 0, n . In this case, (x0, . . . , xn) is called a
de�ning sequence;

2. unilateral, if it is (i, j) -neutral for some (i, j) ;

3. neutral, if it is (i, j) -neutral for all pairs (i, j) such that 0 6 i, j 6 n− 1 ;

4. totally neutral, if it is (i, j) -neutral for all pairs (i, j) such that 0 6 i, j 6 n .

If (x0, . . . , xn) is a de�ning sequence in a quasigroup, then (x0σ, . . . , xnσ) is a de�ning sequence in its σ -
parastrophe. So, if an element e is (i, j) -neutral in a quasigroup, then it is (iσ−1, jσ−1) -neutral in its σ -
parastrophe. Therefore, the concepts of `unilateral element' and `totally neutral element' are totally symmetric.

For example, neutral element in a Boolean group is totally neutral and each element in a ternary quasigroup
(Q; f) which is de�ned on a Boolean group (Q; +) by f(x, y, z) = x+ y + z , is neutral.
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Neutrality for binary quasigroups. In binary case ( n = 2 ) there are three de�ning sequences (e, x, x) ,
(x, e, x) , (x, x, e) of neutrality. So, in an arbitrary binary quasigroup (Q; ·) one can de�ne three types of
neutrality: 1-neutral (left neutral) e · x = x , 2-neutral (right neutral) x · e = x and 3-neutral (middle neutral)
x · x = e . A quasigroup with a unilaterally neutral element is called a unilateral or one-sided loop. A middle
neutral element is also known as unipotent element.

To prove general properties of neutral elements we have to formulate a general de�nition which is a partial
case of the de�nition for n -ary quasigroups. Namely, an element e of a quasigroup A := (Q; ·) is called:

1. i -neutral if the equality x1 · x2 = x3 is true, where xi = e and the other two variables coincide, and
unilaterally neutral, if it is i -neutral for some i = 1, 2, 3 ;

2. {i, j} -neutral if it is i -neutral and j -neutral and two-sided neutral, if it is {i, j} -neutral for some
i, j = 1, 2, 3 ;

3. totally neutral, if it is i -neutral for all i = 1, 2, 3 .

Proposition 2. If an element e is i -neutral in a loop A , then it is iσ−1 -neutral in σA for all i = 1, 2, 3 .
Every parastrophe of a unilateral loop is a unilateral loop. Every unilateral loop A has exactly one neutral
element. The element is neutral in all parastrophes of A .

Proof. Let e be an i -neutral element in a loop A . It means that the equality x1 · x2 = x3 is true, where

xi = e and two another variables are equal. This equality is equivalent to x1σ
σ· x2σ = x3σ according to the

de�nition of σ -parastrophe. Since e = xi = x(iσ−1)σ , then the element e is iσ−1 -th neutral in σA .
Let an element e be i -neutral in A and e′ be j -neutral in σA , then e′ is jσ -neutral in A . If jσ = i ,

then e = e′ since A is a quasigroup. If jσ ̸= i , we consider the permutation

τ :=

(
1 2 3
i jσ k

)
, where {i, jσ, k} = {1, 2, 3}.

Using just proved assertions, the element e is iτ−1 -neutral and e′ is jστ−1 -neutral in τA . Since iτ−1 = 1
and jστ−1 = 2 , then e is left neutral and e′ is right neutral in τA , so e = e′ . 2

Thus, an element with a property of neutrality is unique and the same is true for all parastrophes. But it
can be one-sided, if it has at least one of the properties of neutrality (left, right, middle), two-sided if it has at
least two of these properties or three-sided (totally neutral) if it satis�es all properties of neutrality.

The following table shows what kind of neutrality an element has in parastrophes of a quasigroup A , if it
is left neutral or left-right neutral in A .

A sA ℓA rA srA sℓA
one-sided 1-neutral 2-neutral 3-neutral 1-neutral 2-neutral 3-neutral

left right middle left right middle

two-sided 12-neutral 13-neutral 23-neutral
left-right neutral left-middle neutral right-middle neutral

three-sided 123-neutral, i.e. totally neutral

Therefore

Corollary 3. There exist seven varieties of loops:

The bunch of varieties of loops

the varieties L (= rL) sL (= srL) ℓL (= sℓL)
of one-sided 1-loops, i.e. 2-loops, i.e. 3-loops, i.e.

loops left loops right loops middle loops

x
ℓ· x = y

ℓ· y x
r· x = y

r· y x · x = y · y
the varieties L ∩ sL L ∩ ℓL sL ∩ ℓL
of two-sided 12-loops, i.e. 13-loops, i.e. 23-loops, i.e.

loops left-right loops left-middle loops right-middle loops

x
ℓ· x = y

r· y x
ℓ· x = y · y x

r· x = y · y
the variety L ∩ sL ∩ ℓL
of three-sided total loops, i.e. unipotent loops

loops x2y = y, yx2 = y

Note that a left-right neutral element are traditionally called neutral or an identity element.
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The varieties in the same row are parastrophic, therefore their parastrophic symmetry groups are conjugate
according to p. 3 of Theorem 1.. Indeed,

ℓ(L ∩ sL) = ℓL ∩ ℓsL = ℓL ∩ srL = ℓL ∩ sL = sL ∩ ℓL,

r(L ∩ sL) = rL ∩ rsL = L ∩ sℓL = L ∩ ℓL.

It is easy to varify that
σ(L ∩ sL ∩ ℓL) = L ∩ sL ∩ ℓL, for all σ ∈ S3.

All of these concepts are pairwise parastrophic. Indeed, according to Proposition 2., 12-neutral element in a
quasigroup A is 13-neutral element in rA and 23-neutral element in ℓA .

An example of parastrophic propositions. Consider a well-known proposition P: `Every quasigroup is
isotopic to a left-right loop (=loop)'. And let us �nd all its parastrophes. The concept of `quasigroup' is totally
symmetric because every parastrophe of a quasigroup is a quasigroup; if quasigroups are isotopic then their
σ -parastrophes are isotopic as well, so isotopy is totally symmetric. As we have shown above, the concept of
two-sided loops is middle symmetric. Thus, we have three di�erent parastrophes of P :

• ℓP : `Every quasigroup is isotopic to a right-middle loop';

• rP : `Every quasigroup is isotopic to a left-middle loop'.

Thus the following theorem is true.

Theorem 4. 1. Every quasigroup is isotopic to a left-right loop (=loop):

x ◦ y = R−1
a (x) · L−1

b (y), e = ba = Ra(b) = Lb(a);

2. Every quasigroup is isotopic to a right-middle loop:

x ◦ y = R−1
b

(
x ·Mc(y)

)
, e = R−1

b (c) = M−1
c (b);

3. Every quasigroup is isotopic to a left-middle loop:

x ◦ y = L−1
a

(
Mc(x) · y

)
, e = M−1

c (a) = L−1
a (c);

4. a quasigroup (Q; ·) is isotopic to a unipotent loop if and only if it has elements a, b such that
Mab = L−1

b Ra :

x ◦ y = R−1
a (x) · L−1

b (y).

Examples of bunches. Here we cite some of well-known trusses and bunches of quasigroup varieties.

Example 2. The bunch of all loops consists of seven varieties (see Corollary 3.).

Example 3. The bunch of distributive quasigroups consists of one totally symmetric variety.

Proof. Because every parastrophe of a distributive quasigroup is also distributive [14]. 2

Example 4. The bunch of all groups consists of four varieties:

• variety of groups, xy · z = x · yz ;

• variety of left division of groups, xy · zy = xz ;

• variety of right division of groups, xy · xz = yz ;

• variety of Boolean groups xy · yz = xz .
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Proof. Let G be the variety of all groups. The class ℓG of all left divisions is the class of all quasigroups

(Q;
ℓ·) such that (Q; ·) belongs to G . According to Theorem 3., the class ℓG is described by ℓ -parastrophe of

associativity. Since ℓ2 = ι , then it is the identity

(x
ℓ· y) ℓ· z = x

ℓ· (y ℓ· z).

Let us use the primary identities. Denote v := y
ℓ·z , then y = vz ; and u := (x

ℓ·y)ℓ·z implies x = uz ·y = uz ·vz .
Therefore, the identity can be written as

u = (uz · vz) ℓ· v.

Applying a primary identity, we obtain uz · vz = uv . Analogously one can show that the class rG can be
described by xy · xz = yz . According to Theorem 3., the variety sG is described by

(x
s· y) s· z = x

s· (y s· z).

As x
s· y = y · x , this is the identity of associativity. Therefore, sG = G . It means Ps(G) ⊇ {ι, s} . Let

(Z; +) be the group of integers. Then the quasigroups (Z; +) , (Z;
ℓ
+) , (Z;

r
+) are pairwise di�erent because

the operations (+) , (
ℓ·) , (

r·) are di�erent. These statements follow from the equalities

2 + 3 = 5, 2
ℓ
+ 3 = 2− 3 = −1, 2

r
+ 3 = 3− 2 = 1.

Thus, sG = G , ℓG = srG , rG = sℓG are pairwise di�erent varieties and Ps(G) = {ι, s} . An intersection of
any two of them gives the variety of Boolean groups. 2

Identities and functional equations
The concept of `identity' can be divided into two parts:

1. a proposition, for example, in the real number group (R; +) , the following identity is true

(∀x)(∀y)(∀z) (x+ y) + z = x+ (y + z); (10)

2. a predicate, for example, the class of all semigroups is de�ned by the following identity

(∀x)(∀y)(∀z) (x+ y) + z = x+ (y + z); (11)

In 1) the symbol + denotes a �xed operation, namely addition of the real numbers, but in 2) the symbol
+ denotes a functional variable. We need to distinguish the concepts. Therefore, we keep the name `identity'
only for (10), and (11) will be called a functional equation. For giving exact de�nitions we remember the concept
of a term.

Terms and words. Let Q be a set which will be called carrier or underlying set. Let

• Q := {a, b, c, a1, . . . } be a set of �xed elements from Q (individual constant);

• F := {f, g, h, f1, f2, . . . } a set of functional symbols which denote one and only one operation de�ned on
Q (functional constant);

• X := {x, y, x1, x2, . . . } a set of individual variables representing the elements from Q ;

• F := {F, F1, F1, . . . } be a set of functional variables.

De�nition of a term:

1. every variable from X and every individual constant from Q are tems;

2. if f ∈ F is an n -ary function, F ∈ F an n -ary functional variable and T1 , . . . , Tn are terms, then
f(T1, . . . , Tn) , F (T1, . . . , Tn) are terms;

3. no terms exist other than those implied by the previous rules.
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A term is called a word, if it has no functional variable. Let T be a term then [T ] and ⟨T ⟩ denote the sets of
all individual and functional variables appearing in T respectively.

Let [T1] ∪ [T2] := {x1, . . . , xn} and {F1, F2, . . . , Fk} ⊆ ⟨T1⟩ ∪ ⟨T2⟩ , then the formula

(∀F1)(∀F2) . . . (∀Fk)(∀x1)(∀x2) . . . (∀xn)(T1 = T2) (12)

is called a universal (quanti�ed) equality. We will denote it without quanti�ers.

De�nition 1. A universal equality (12) is called a functional equation on Q if it has at least one free functional
variable, otherwise it is called an identity if it is true and a contradiction if it is false.

For example, let F1 be unary and F3 be binary real functions de�ned everywhere, then

(∀F1)(∀F3)(∀x)(∀y)(∀z)
((

F1(x) + sinx
)
+ F3(x, y) = F1(x) +

(
sinx+ F3(x, y)

))
is an identity on real numbers. In this formula (+) is binary and sin is unary functional constant.

De�nition 2. A functional equation is called pure, if it has neither functional constant nor individual constant.

De�nition 3. A value of lexicographic sequence of all free functional variables of the given functional equation
is called its solution, if the equation becomes an identity after substituting of the solution for functional variables.

Pure functional equation can be considered on every carrier and on every carrier it has some set of solutions.
So, a solution of a pure functional equation is a pair: a carrier and a sequence of functions de�ned on the carrier.
Therefore, all solutions of a pure functional equation form a class of algebras. The class is called a variety and
the functional equation is called an identity which describes the variety.

De�nition 4. A formula (12) is called a universal quasigroup equality if its both functional variables and
functional constants present quasigroup operations.

A primary quasigroup super-identity is a pure quasigroup identity which follows from the de�nition of an
invertible operation and its parastrophes. For binary case, these identities are the following:

σ(τF ) = στF, sF (x, y) = F (y, x),

ℓF (F (x, y), y) = x, F (ℓF (x, y), y) = x,

rF (x, F (x, y)) = y, F (x, rF (x, y)) = y,

sℓF (x, F (y, x)) = y, F (sℓF (x, y), x) = y,

srF (F (y, x), y) = x, F (y, srF (x, y)) = x.

(13)

De�nition 5. Two functional equations are said to be equivalent on a carrier if they have the same set of
solutions on the carrier. Two pure functional equations are called equivalent if they are equivalent on each
carrier.

Following Sade [11], an operation will be called diagonal, if f(x;x) is a permutation of the carrier set. A
binary functional variable will be called diagonal, if it presents diagonal operations.

Two functional equations are said to be parastrophically primarily equivalent, if one can be obtained from
the other in a �nite number of the following steps:

1) application of quasigroup superidentities (13);

2) changing sides of the equation;

3) renaming individual variables;

4) renaming functional variables.

Two functional equations are said to be diagonaly parastrophic, if one can be obtained from the other in a
�nite number of the following steps:

1) application of quasigroup superidentities (13);
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2) changing sides of the equation;

3) renaming individual variables;

4) renaming functional variables;

5) replacing a sub-term F (x;x) with δF (x) , if F is a diagonal functional variable and vice versa.
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ÏÀÐÀÑÒÐÎÔÍÀ ÑÈÌÅÒÐIß Â ÒÅÎÐI� ÊÂÀÇIÃÐÓÏ

Ñîõàöüêèé Ô.Ì.
ÐÅÇÞÌÅ
Ó öié ñòàòòi âèäiëåíî äåêiëüêà ïðîáëåì òåîði¨ êâàçiãðóïï. Îñîáëèâà óâàãà ïðèäiëÿ¹òüñÿ ïðîáëåìi ïà-

ðàñòðîôíî¨ ñèìåòði¨. Äàíî îçíà÷åííÿ ïàðàñòðîôíèõ âiäíîøåíü íà: âiäíîøåííÿõ òà îïåðàöiÿõ, ìíîãîâèäàõ
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êâàçiãðóï, òâåðäæåííÿõ, êâàçiãðóïîâèõ òîòîæíîñòÿõ, ïîíÿòòÿõ â òåîði¨ êâàçiãðóï òîùî. ßê ïðèêëàä, íà-
âåäåíî ïàðàñòðîôíî çàìêíóòèé íàáið ïîíÿòü îäíîñòîðîííiõ íåéòðàëüíèõ åëåìåíòiâ, à òàêîæ âiäïîâiäíèõ
ìíîãîâèäiâ.

Êëþ÷îâi ñëîâà: êâàçiãðóïà, ëóïà, ñèìåòðiÿ, íåéòðàëüíèé åëåìåíò, ïàðàñòðîô, ìíîãîâèä, ïó÷îê, â'ÿçêà,
òîòîòîæíiñòü, ôóíêöiéíå ðiâíÿííÿ.

ÏÀÐÀÑÒÐÎÔÍÀß ÑÈÌÌÅÒÐÈß Â ÒÅÎÐÈÈ ÊÂÀÇÈÃÐÓÏÏ

Ñîõàöêèé Ô.Ì.
ÐÅÇÞÌÅ
Â ýòîé ñòàòüå âûäåëåíî íåñêîëüêî ïðîáëåì â òåîðèè êâàçèãðóïï. Îñîáîå âíèìàíèå óäåëÿåòñÿ ïðîáëå-

ìå ïàðàñòðîôíîé ñèììåòðèè: äàíî îïðåäåëåíèå ïàðàñòðîôíèè íà: îòíîøåíèÿõ è îïåðàöèÿõ, ìíîãîîáðà-
çèÿõ êâàçèãðóïï, óòâåðæäåíèåõ, êâàçèãðóïîâûõ òîæäåñòâàõ, ïîíÿòèÿõ â òåîðèè êâàçèãðóï è ïðî÷åå. Â
êà÷åñòâå ïðèìåðà, ïðèâåäåí ïàðàñòðîôíî çàìêíóòûé íàáîð ïîíÿòèé îäíîñòîðîííèõ íåéòðàëüíûõ ýëåìåí-
òîâ, à òàêæå ñîîòâåòñòâóþùèå ìíîãîîáðàçèÿ.

Êëþ÷åâûå ñëîâà: êâàçèãðóïïà, ëóïà, ñèììåòðèÿ, íåéòðàëüíûé åëåìåíò, ïàðàñòðîô, ìíîãîîáðàçèå,
ïó÷îê, âÿçêà, òîæäåñòâî, ôóíêöèîíàëüíîå óðàâíåíèå.
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