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GROUP CLASSIFICATION OF THE LINEAR STOCHASTIC DIFFERENTIAL ITO EQUATION

The article deals with the task on the group classification of the linear stochastic differential Ito equation of a given
type which changes due to the parameters appearing in this equation. The problem is solved by the symmetry reduction. The
result of the study is a table full of group classification of the equations, which lists all the possible equations and allowed
their symmetry group.
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Introduction. The group analysis of differential equations dates to S. Lie and his pupils’ works [1-3]. It
was Lie who created and for the first time used the mechanisms of theoretical-group reduction. As a rule, when
constructing the mathematical models of real processes they obtain the differential equations which symmetry
properties are unknown. That’s why of special importance is a technical task of a broader (maximum) group of
symmetry admitted by a given differential equation [4, p. 7]. Nowadays the symmetry properties of many known
equations of mechanics, gas dynamics, quantum physics (for ex., [5-7]). Many differential equations describing
real processes have nontrivial symmetry properties. So, when choosing a differential equation as a mathematical
model, symmetry is of a definite value. That makes it possible to effectively use the method of symmetry reduc-
tion to construct solutions of such equations. So, owing to the efficiency of using the method of symmetry reduc-
tion, it is actual to separate those differential equations out of a given class which have the highest symmetry
properties (the task of group classification of differential equations). Solution of this problem is important not
only from the mathematical viewpoint, but it is also motivated by a possibility of using the results in different
applied problems. The differential equations found in different applied problems often comprise arbitrary param-
eters and functions. At the same time one can raise a demand for an arbitrary element to have such a form at
which an equation admits the broadest invariance group. The full description of the specifications of an arbitrary
element makes the sense of the problem of the group classification of differential equations.

Just this very problem is discussed in this article as an addition to the stochastic differential Ito equations. In
what follows, the word combination “stochastic differential equation” will be replaced by the abbreviation “SDE”.

One of the significant differences of SDE is that their solutions have no derivatives in the classical sense.
Thus, the Lie-Ovsyannikov theory cannot be directly applied to the study of the symmetry properties of the Ito
SDEs.

The pioneers in developing the theory of the symmetry analysis of SDEs are Yu.L. Daletsky and
Ya.l. Belopol’skaya. It was they who introduced the concept of the Ito SDE invariance relative to a one-
parameter group of transformations of a phase variable and proved the criterion of the SDE invariance relative to
such transformations [8, p. 265]. But the definition of the SDE invariance introduced by the authors of mono-
graph [8] contains the demands which greatly limit the class of groups admitted by SDE. Within such a defini-
tion only transformation of a phase variable are admitted and such transformations must be nonrandom functions
which do not depend on time. The time variable is not transformed thereat.

Introducing the concept of the SDE invariance, the authors of monograph [8] suppose that these transfor-
mations effect only on a phase variable and change only the initial state of the process. Our approach assumes
that the group transformations effect both on a phase variable and on a time variable. Here, the Wiener process is
not to be maintained and can be transformed into some diffusion process. In this case a germ of the initial diffu-
sion process transforms into a germ of the transformed process in such a way that only their drift and diffusion
components must be invariant and the initial state and the Wiener process can be different.

In 2002 S.A. Mel’nick [9] gave the definition of a one-parameter local group of transformations for a sto-
chastic differential equation, but the dependence of the coordinates of the infinitesimal operator of an admissible
group on the Wiener process appearing in the equation was not taken into account. In 2004 Italian scientists R.
Quinterro and D. Gaeta [10-12] also defined a local one-parameter group for SDEs and proved a corresponding
criterion of the equation invariance relative to the admissible group but therewith they did not consider the Wiener
process transformation appearing in the equation. That restricted the class of admissible groups for SDEs up to the
translation and dilation groups. In [13, 14] they generalized the definition of one-parameter local group of transfor-
mations for SDEs given by S.A. Mel’nick, D. Gaeta and R. Quinterro. That made it possible to broaden the class of
admissible groups for SDEs. The definition of SDE invariance relative to an admissible group allowed proving the
invariance criterion. The invariance criterion of SDEs is a system of linear differential equations in partial deriva-
tives in which the unknown quantities are the coordinates of an admissible group operator, i.e. the system of deter-

26 © Alexandrova O. V., 2014



ISSN 1817-2237. Bicuuk /loHenbkoro HanioHanbHoro yHisepcurery. Cep. A: Ilpupoanuyi nayku. — 2014, — Ne 2

mining equations. This criterion allows constructing the basic group admitted by the equation. With the help of the
proved criterion one can also find the class of equations invariant relative to a given group.

Let’s come back to the problem of group classification.

As a basis of the method of classification Lie takes the enumeration of all algebras of the Lie operators. To

introduce the concept “Lie algebra”, let’s determine commutators [X 1.X 2] of any pair of operators of the type

0,,m° ()9, 02
Xz(l)—+(—,X= —+ — 1
1=e ot o Xy =gt (1
with the help of the formula
[X1. X2 ]=X1X) - X5 X1 . 2
An operator of the form (1) will result again, that following from the equality:
(x (@) 12( @)\_ 1)3
[X1.45] (Xl(f ) X2(~§ ))at+ X1(77 ) Xz(ﬂ ) o ®)

Formula (3) can be used instead of (2). [15, p. 10].
Definition 1. [15, p. 10]. Lie operation algebra (1) is called a vector space L, which, side by side with any

operators X, X, € L, also includes their commutator [.X7,X,]. This Lie algebra is denoted by L and the di-

mension of algebra is taken as the dimension of vector space L.
Problem Statement. Our purpose is the construction of operators allowed by the given equation and con-
struction of Lie operation algebras.
Before stating the results, it should be said that all functions under study are taken as continuous and
having continuous derivatives of necessary orders.
Task Solution Design. An ordinary linear stochastic differential Ito equation was considered in complete
probabilistic space (Q,F,P)
t t
u(t)=uy+ j (bu+a)dh+ j (cu+B)dW (h), @)
0 0
where ¢t€[0;T], W(¢) is a standard Wiener process which is measurable relative to the flow of o -algebras

{E }:0:0 , FreF,uye R! and a, b, B, o are such numbers that task (4) has a unique solution.

Let’s formulate and then prove the corresponding theorems.
Theorem 1. Let b —oca #0, o #0 .Then

1) if b= %2 , then equation (4) admits a two-dimensional algebra of symmetry generated by the operators:

2
X, = 5: . X, :eO'W(t)+(b—0' /Z)tau .

2)if b =c?/2 , then equation (4) admits a two-dimensional algebra of symmetry generated by the operators:
X] =6t, X2 =€O-W(t)au.
Theorem 2. Let b —oa =0, ¢ #0. Then

1) if b#c?/2 ,a#0, B #0, then Ito equation (4) admits a three-dimensional Lie algebra based on the opera-
tors:

ou+p

2
X =t0,+ ln|0u+ﬂ|+(b—%} Oy, Xp=0,, Xy=(ou+p)o,;

2)if b# %2 , 0 =0, B =0, then Ito equation (4) admits a three-dimensional Lie algebra with the basis:
u 0'2
Xl :lat +E ln|w|+[b—7} 8u s XZ :at s X3 = ou@u 5
3)if b=c?/2 , 0 #0, B #0, then Ito equation (4) admits a three-dimensional Lie algebra with the basis:
ou +
X, =10, +(2—Gﬂ)(ln|ou 8Py, Xy=0,, X3=(ou+p)o,;
4)if b= % /2 , 0 =B =0, then Ito equation (4) admits a three-dimensional Lie algebra with the basis:

Alexandrova O. V. 27



ISSN 1817-2237. Bichuk /loHenbkoro HanionanbHoro ynisepcurery. Cep. A: Ilpupognunyi Hayku. — 2014, — Ne 2

Xl :t@t +(%1n|0u|}8u , Xz :at, X3 =0u8u.

Theorem 3. Assume that in equation (4) 6 = 0. Then:
1) at b#0, a#0and B #0 itadmits a four-parameter group generated by the operators:

o2t o2t (bu + a) 260

Xj=—0209,+ 0,, Xy=0,, X3= 0, +Qu—-pw(t)e?s,, X4=€",.

2b 2b
2) at b#0, a=0, p#0 itadmits a four-parameter group generated by the operators:
eth eth 2ebt bt bt
X, :Eaf +Tu6u, X,=0,, Xy="-0,+Qu-pw(t)e”o,, X4s=€"0,.

Theorem 4. If in equation (4) 6 =0,b#0, o+# 0 and =0, it admits the infinite Lie algebra:

bt
Xy = &), +(bu+a)ét)o,, X,=¢"d,. X3=0,.
Theorem 5. Assume that in equation (4) 6 =0, b =0. Then:
1)if a# 0,B # 0, then it admits a three-dimensional Lie algebra with the basis:

X, =20, +(u+at)d,, Xy=0,, X3=0,.,
2)if a= 0,B # 0, then it admits a three-dimensional Lie algebra with the basis:
Xl :8l‘7 X2 :6u, X5 =2t6, +u6u.
On its own let’s consider a special case when the expression under logarithm in theorem 2 vanishes. Let’s
formulate this case in the form of the following theorem.
Theorem 6. If inequation(4) 0 #0, bf—ca =0, and uy=—p/c, then u(t)E—ﬂ/G .

u-

Proving. Assume that in equation(4) uy=—//0c , then:

t t

u(t)=-L + j 2L ¢ oyan+ j (—U—ﬂ+ ﬂJdW(h), (5)
o 0 o 0 o

whence if bff — o a =0, then there appears the equality u(t)z— blo.

Theorem 6 is proved.

Corollary fact. If in equation (4) c#0, bf—oca =0, B=0and uy =0, then u(t)= 0.

Proving. If =0, then the approval of the corollary fact results from theorem (6) if # = 0 is substituted
into formula (5).

Comment 1. The expression under logarithm in theorem 2 vanishes only if uy=—//0c . In proving theo-
rem 2 we’ll suppose that 1y #—//0 . Then at § = 0 (points 2) and 4) of theorem 2) it’s naturally to assume that
Uy # 0.

Comment 2. Formulated theorems (1)—(5) let us divide the proving into two moments which will refer to

cases 0 =0 and o #0.
Case o # 0. An admissible operator of equation (4) will be sought for in form [14]:

X =£@)0,+n(t.W (t),u)d, .
To calculate the operator coordinates coefficients A(t,u) =bu+ta, B(t,u) =ou+ 3 are to be substitut-
ed into the system of determining equations [14]:

Ty +Gé—w}(0u+ﬂ)+na=0,

(6)
1 +(6 = b @) -~y (o B (o) =0,
The general solution of the first equation of the obtained system (6) is the function:
St eGW(t)
n(t,W(t),u)=%(0u+ﬂ)ln|0u+ﬂ|+(au+ﬂ)F t,m . (7
Let
zzeaW(t)/(O'u+ﬂ) . ®)
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then F' (t, z) is an arbitrary function continuously differentiated by variables ¢ and z.
Having substituted the computed 7 into the second equation of system (6), we’ll obtain the equation:

gt t ( 52‘

ou+pf ln|0'u+,8| bu+a ln|0'u+,8|+ 0'u+ﬂ)ln|0'u+ﬂ|+

+%[bu +a—@]§t —(ou+p)F,—o(bu+a)F+

() 2 oW(z)
+b(ou+ B)F +| o(bu+a)-S ¢ F,=0 9
e e o
Let
S=ac—pb, y=b-c/2. (10)
Rewrite the last equation (9), with equations (8) and (10) being taken into account:
O'W(t) O'W(t) O'W(t) O'W(t)
i © -1n|e | o -1n|e |-.§t+i ;/e +0 |-
20 z ‘ z ‘ 20 ‘ z ‘ 20 z
eO'W(l‘) W
- - Ft—é'F—{j/e‘7 (t)+5z}FZ=O. (11)

Equation (11) is a classifying one as it comprises the arbitrary elements J and y. Depending on either
these elements are equal to zero or not we’ll obtain the result formulated in theorems (1) and (2).

Formation of symmetry of a linear stochastic differential Ito equation in the case o = 0. In the case
o =0 equation (4) will take the form:

t t
u(t) =ug + j (bu(h)+ar)dh+p j dw (h) . (12)
0 0
To calculate the coordinates of the admissible operator, substitute coefficients A(t,u)=bu+a and

B (t,u) = [ into the system of the determining equations [14]:

1
Ty +(5§t My jﬂzoa

13
| ) , (13)
=148 =11 )bt @) b=ty =i S~ i~ =0.
The general solution of the first equation of the obtained system is the function:
1

n(t,W(t),u)=E§tu+CD(t,u—,b’W(t)), (14)

where @ is an arbitrary continuously differentiable function which is to be determined.

Let

r=u—pma, (15)

then (D(t,u -p W(t)) = (D(t,r) . Substitute the obtained expression for U(t,W(t),u)into the second equation
of system (13) and as a result we’ll obtain:
_%ftt“ -, +(bu +a)(%§, —CD,,j+b7u§t +bD =0-

Taking into account the symbols of (15), the last equation can be rewritten in the form:

—%etn(HﬂW(t))—@t +(b(r+/3W(t))+a)G§t —®rJ+ wé +b0=0. (16)

Equation (16) is a a classifying one as it comprises the arbitrary elements a, £ and b. Depending on either
these elements are equal to zero or not we’ll obtain the result formulated in theorems (3)—(5).

Conclusions. There has been made a group classification of the ordinary linear stochastic differential Ito
equation of the general form depending on combinations of the parameters constituent of the given equation.

The main results are given in the Table.
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Table
Group classification of the linear stochastic differential Ito equation
Group Basic operators Equation
du(t)=(bu +a)dt+(0'u +ﬁ)dW(t),
2
G, X, =08,. Xy=eoWOHb=0 25 bB-caz0, 00
X1=0;,
=2 it + (o + B)dW (¢)-
ou + IB 02 du ﬂ (O'Lt + IB)
Xy =10+ In(ou + B)+ b=t Pu
o

X3=ou6u.
G, _ _s5. (outh) 2
X1 =0;, Xy=t0,+ = In(ou+p)0, » du(z)={%u+a]dz+(au+,3)dW(t)-
X3:(O'u+,3)8u-

bf—-oca=0, c#£0.
X3:(Ou+/8)au' / i

2
X :a ) = z _0-7 ’
1=0;> Xo =10, +2 ln(ou)J{b b ]t Ou du(t) =budt+oudW(t).

X1 =400, Xy =(buta)e()o,. du(t) = (bu + a)dt .

X3 = ebtau .
X1 =0,, X, =2t0,+u+at)o,,
1=0r, A2 i +ura)o, du(t) = odt + BdW(t) .
X3 = au .
X1 =0,. Xy=0,. X3=210,+ud,. du(t) = pdW (1).
2bt 2bt
X1 =0y, X2:e az"’_e (bu+a)a“’
. 2b 2b du(t)=(bu+a)dt+BdW (t).
X3 =20+ u-p (0)"0,. Xy=d"d,.
Gy o2bt 2t
X1=0,, Xy=—-0,+—ud,,
| 2b 2 du(t)=budt+ AW (1) .
=2 - 0)e0, . Xi=,
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PE3IOME

PaccmarpuBaercs 3azada O rpynnoBoi KiaccH(UKALMK JIMHEHHOTO CTOXAaCTHYECKOro auddepeHnnansHoro ypaBHe-
Hus WTo 3apaHHOrO BHJA, KOTOPOE M3MEHSETCS 3a CUET I1apaMeTpOB, BXOAAILIMX B 3TO ypaBHeHue. [locraBiieHHas 3agada
pelieHa METOIOM CHMMETPHHHON peayKuuu. Pe3ynbTaToM HMpOBEASHHOTO MCCIEIOBAHUS SIBISICTCS TabNMIa IOJIHOH TpyII-
MOBOW KJIaCCH(UKAIIMN PACCMOTPEHHOTO YPaBHEHHMs, B KOTOPOIl NMPUBEICHBI BCE BO3MOXKHBIC YPAaBHEHHS U JOITyCKAaeMBbIE
VMU IPYIIIbl CHMMETPHU.

Kniouesvie cnosa: croxacrudeckoe nuddepenuuansaoe ypasHenue Mro, rpynoBoii aHanu3, KoMmyrarop, anredpa
JIn oneparopos.

PE3IOME

Posrnsmaerses 3amada mpo rpynoBy Kiacudikamiio JiHIHHOTO CTOXaCTHYHOTO IudepeHnianpHoro piBHAHHA ITO 3a-
JIAHOTO BHIY, SIKE 3MIHIOETHCSI 32 PaXyHOK MapaMeTpiB, 110 BXOIITh B 1ie piBHsHH:. [locTaBiiena 3aaya BUpillleHa METOIOM
CHMeTpiiiHOT peaykuii. Pe3ynbraToM MpoBEIEHOro AOCITIPKeHHs € TaONuils MOBHOI rpynoBoi KiacHpikalii po3risiHyToro
PIBHSIHHS, B SIKii HaBeICHO BCi MOXKJIMBI PIBHSHHS 1 JOMYCTHMI HUMHU TPYIH CUMETDIi.

Kniouosi cnosa: croxactuute nudepeHuianbae piBHAHHS [TO, rpynoBHil aHami3, koMmyTaTop, anredpa Jli onepaTopis.
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