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Let A be an m x n matrix of variables. An n-ary operation f and m-ary operation g
are said to satisfy the medial law if two results are the same: 1) an application of f to the rows
of A then an application of g to the obtained column and 2) an application of ¢ to the columns
of A then an application of f to the obtained row. A universal algebra (A;(2) is called: medial
if every two operations from () satisfy the medial law; abelian if it is medial and has a one-
element subalgebra. Criteria for being medial and for being Abelian are found for universal
algebras (A;Q) which have 0 € @ and f € Q such that the term f(zo,...,2,) defines a
quasigroup operation if all variables are 0 except z; and x, and it defines a permutation of
) if all variables are f(0,...,0) except z; or except z, for some different i, p.
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Introduction

A natural appearance of mediality identities and their generalizations are clarified in many
works. For instance, in |1, chapter 18], a connection of the identity of generalized mediality with
webs and nomograms is shown. A.G. Kurosh [6] proved that endomorphisms of a universal
algebra form a universal algebra of the same type if and only if it is Abelian universal algebra,
i.e., every two operations of the algebra are connected by the identity of mediality (6) (here,
such algebras are called medial) and it has a one-element subalgebra.

Let (Q;+,0) be a commutative monoid and let € consist of operations being repetition-
free composition of (+), some pairwise commuting endomorphisms of the monoid and some
elements satisfying (6) z;; = 0 for all 4,7, then the universal algebra (Q;€) is medial. A
counterexample for its reverse statement is not known for the author. A proof of the reverse
statement has been given in [3, 1972] for multiary medial quasigroup operations. In [8, 2006],
the reverse statement has been proved under assumption that ) contains an operation which
is 7- and j-invertible for some ¢ and j. In this article, we generalize this result and prove
the reverse statement under the following assumption: a medial algebra (Q;€2) has 0 € () and
f € Q such that the term f(zo,...,z,) defines a quasigroup operation if all variables are 0
except z; and z, and it defines a permutation of () if all variables are f(0,...,0) except
x; or except z, for some different i, p. Other results have been obtained in [4, 2013| and |5,
2014] about the reverse statement under assumption: existence elements with some property of
regularity (i.e., invertibility) concerning every operation of a corresponding medial algebra.

Other considerations of medial algebras one can find in the list of references in [4, 5.

1. Preliminary

All operations are supposed to be defined on the same set denoted by ) and called a
carrier.
An (n+ 1)-ary operation f is called
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e i-invertible, if the equation f(ao,...,a;1,%,a;+1,...,a,) = a; has a unique solution
for all ag, ..., a, from @. In this case, the assignment (ay,...,a,) — = defines an
operation [f called i-th inverse of f. The i-th invertibility of f means the existence
of an operation [lf such that the identities

f(ﬂfm sy Li—1, [Z]f(x(b S axn>axi+17 s 7‘7;71) = Ty,
[i]f<x07 cee 7xi717f(‘1.07 s an)axiJrlu cee 7'%11) =T

hold. In other words, the operation f is an i-th invertible element in the 7-th symmetric
monoid (O,11;®) of (n+ 1)-ary operations on @, where
(2

(f @ h)(ﬂfo, ce 7xn> = f(l’(], sy L1, h(l’o, ce an);xiJrlu ce 7xn>;

)

e invertible or a quasigroup operation, if it is i-th invertible for all + =0,...,n;
e derived from a group (Q;-), if for all zg, ..., z, € Q
flzoy o yxn) =20 21 ... Xy

A mapping a of a groupoid (G;-) in a group (Q;+) is called:

e affine, if there exists a homomorphism 6 of the groupoid (G;-) in the group (Q;+) and
elements a, b of (Q;+) such that ax =a+60x 4+ b for all z € G;

e linear, if there exists an isomorphism 6 between (G;-) and (Q;+) and elements a,b € Q
such that ax =a+60x+0b forall x € G;

e unitary, if e =0, where e is a neutral element of the groupoid (G;-).

A sequence (ag, v, ...,an,an11) of mappings of a set A onto a set B is called a
homotopism (41 is its principal component) of an (n + 1)-ary groupoid (A; f) onto an
(n + 1) -ary groupoid (B;g) if

gz, 021, ...y anxy) = i1 f (T, 21, .o, Tp).

If, in addition, the principal component «,.; is: a bijection, then the homotopism is called
cardinal; an identity transformation (consequently, A = B), then it is called principal. If
all components «y, oy, ..., a,, a,r1 are bijections, then the homotopism is an isotopi-
sm. Respectively, the groupoid (B;g) is called an homotope (a cardinal homotope, a principal
homotope, an isotope) of (A; f). The relations between the groupoids are called homotopy, cardi-
nal homotopy, principal homotopy and isotopy respectively. Note that each cardinal homotopism
between binary quasigroups is an isotopism.
It is easy to prove the following statement.

Lemma 1. A triplet (o, 3,7) of mappings (bijections) of a set Q) is a homotopism (isotopi-
sm) of a quasigroup (Q;-) onto a group (Q;+) if and only if there exists an endomorphism
(automorphism) 0 of the group (Q;+) and elements a, ¢ € Q such that

ax = 0x + a, fr=—a+0zx+c, vyr = 0x + c.
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Suppose (n+1)-ary groupoid (B;g) is a homotope of a quasigroup which is derived from
a binary group (Q;-), then (Q;g) will be also called (n+ 1) -ary homotope of the binary group
(Q;-), briefly a group homotope. Therefore, a cardinal group homotope is a group homotope
such that the principal component is a bijection in the corresponding homotopism.

Let (Q;f) be an arbitrary (n + 1)-ary groupoid. If there exists a group (@;+,0) (not
necessary commutative), transformations ag, oy, ..., «a, of the carrier and an element a such
that

flzo,x1,. .., Tp) = Qoo + 1y + -+ - + @z, + a, (1)

then (Q; f) is a cardinal homotope of a binary group (Q;+,0).

The right side of (1) will be called a 0-canonical decomposition of (Q;f), if
a0 = ... = @,0 = 0 and will be denoted by (0,4, aq,...,a,,a). In this case, aq, ...,
a,, are called coefficients, a is a free member and (Q;+) is called a decomposition group. We
will also use the notations

pp=ogton o, —1, o api=a 2)

Lemma 2. In a cardinal homotope of a binary group, an arbitrary element 0 defines its 0 -
canonical decomposition.

Proof. Suppose (Q; f) is an arbitrary (n+1)-ary homotope of a binary group (A;x*) and

let (0g,...,0n,0n41) be a corresponding homotopism, besides 0,1 is a bijection, i.e.,
flxo,z1,...,2,) = 6;i1(50x0 * 0101 * -+ % 0,)
holds for all zy, ..., x, € Q. Define (-) on @Q by

zy =0, (Op12 % 0pp1y), ie, xxy:=8u1(6 26 y).

The first equality means that J,; is an isomorphism of the groupoid (Q;-) and the group
(Q; *) . Therefore, (Q;-) is a group. Using the expression of the operetion (x), the previous
relationship can be written as follows

-1 -1 -1
f(xo, L1y ,ZI}n) = (5n+160I0 . (5n+151I1 oLt 6n+16n$n-

Let 0 be an arbitrary element from Q and 07! be its inverse in (Q;-). It always exists, since
(Q;-) is a group. Define (+) by

r+y=x-0"' y=8"YBx-By), where Br:=z-0"' B lz==z-0.

It is easy to verify that (Q;+) is a group and 0 is its neutral element, since (Q;+) is isomorphic
to (Q;-). Consequently,

f(xo, 21, .. xy) = (6, 410070 - 0) + (6, 510121 - 0) + ... + (8,100, - 0).
For every ¢ =10,1,...,n, we define a; := 5;}r15i0 -0 and
Vi = (5;1151»@ - 0) — a;.
Therefrom ~;0 =0 and 57;1152‘1’1' -0 = ~v;x; + a; . Therefore,

f(xg,xl,...,xn) :’)/oiL’o—i‘ao—i"YliUl+a1+...—|—’}/nl‘n—|—an.
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Introduce some notations:
Qap =Y, T :=ag+NT —ap, T:=a +a +NMT—a —a,...
o =ay+ ...+ ap-1 + MT — ap—1 — ... — Q.
It is easy to see that o;0 =0 and
f(zo, @1, ..., Tp) = Qoo + 11 + ... + Ty +ag+ a1 + ... + ay.
Substituting a := ap+a; +...+a,, we obtain (1). Thus, existence of a 0-canonical decomposi-
tion has been proved.

A cardinal group homotope will be called affine, if all coefficients of its canonical
decomposition are endomorphisms of the corresponding decomposition group. If in (1) the
free member is 0, i.e. f(0,...,0) =0, then the homotope will be called unitary.

Functional equation of generalized mediality. Universally quantified formula
F1<F2(I7 y)u F3(u7 U)) - F4(F5(ZE, u)7 F6<y7 U)>’ (3)

where I}, ..., Fg are function variables, is called a function equation of generalized mediality.
This functional equation was solved in [2] on the set of invertible functions defined on an
arbitrary set. Namely, the following theorem has been proved.

Theorem 1. A sextuple (f1,...,fs) of binary invertible operations defined on a set Q) is a
solution of (3) if and only if there exists a commutative group (Q;+) and permutations «,
ﬂ; g 67 >\27 )\3; )\57 )‘6 OfQ such that

fi(z1,22) = Aoz1 + Ag22,  fa(21,22) = Asz1 + Ae2o,
folz,y) =N az + By), fs(z,u) = A (ax + yu), (4)

fg(U,U)IA??l(”}/U—l-éU), fﬁ(yav):)\(jl(ﬁy—i_é?j)
Corollary 1. If a sextuple of invertible functions is a solution of the functional equation of

general mediality, then all of these functions are isotopic to the same commutative group operati-
on.

Canonical decompositions of group isotopes. A groupoid (Q;-) is called an isotope of
a groupoid (Q';+), if there exists an isotopism (8, v, ) such that z -y :=~(6 'z +v~1ly) for
all x,y € Q. An isotope of a group is called a group isotope. A permutation a of a set @) is
called unitary of a group (Q;+,0), if «(0) =0.

Definition 1. [5] Let (Q;-) be a group isotope and 0 be an arbitrary element of Q). Then the
right side of the formula

r-y=ar+a+ Py (5)
is called a 0-canonical decomposition, if (Q;+) is a group, 0 is its neutral element and
a0 =p60=0.

In this case, the element 0 is a defining element; (Q;+) a decomposition group; a its
free member; « its left coefficient; [ its right coefficient; Jry, where v := af~!, is its middle
coefficient of the canonical decomposition. Briefly, the canonical decomposition will be denoted
by <+707a7/8’a)‘

Theorem 2. [5/ An arbitrary element b from the carrier uniquely defines b-canonical
decomposition of an arbitrary group isotope.
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2. Medial and Abelian algebras

One of significant properties of Abelian groups is “homomorphisms of a groupoid onto an
Abelian group form an Abelian group”. A.G. Kurosh [6] used this property to define a class
of universal algebras — Abelian algebras. He proved that this class is a variety whose algebras
satisfy a system of identities called medialities and have a one-element subalgebra. In [8, 4, 5] a
universal algebras with identities of mediality is called a medial algebra. Therefore, an Abelian
algebra is a medial algebra which has a one-element subalgebra.

Identity of mediality. Let

ZToo Tor - Ton
Tio0 T11 * Tin
Tmo Tml *°° Tmn

be a matrix of variables. We say that operations f and g of the arity n+ 1 and m + 1
respectively satisfy the identity of mediality if two results are equal for arbitrary meaning of
the variables: 1) application f to each row of the matrix and then application g to the obtained
results; 2) application ¢ to each column of the matrix and then application f to the obtained
results. In other words, the identity

g(f([L'Oo,...,Ion),...,f(l’mo,...,l’mn)) == (6)
= f(9(x00y -, Tmo)s - 9(Ton, -+ s Timn))

is true.

A universal algebra (Q; Q) is called medial, if each pair of operations satisfies the identity
of mediality. Hence, a groupoid (Q; f) of the arity n + 1 is medial, if it satisfies (6) when
g=1.

Let an (n + 1)-ary operation f be defined on @ and let e € Q. The element e will be
called:

o unarily i -invertible for fif \(x) := f(é,x,néi) is invertible, i.e., \; is a permutation
of Q;

1 n—

e Y, ep) is invertible, i.e., (Q;0) is a

e binarily ip-invertible for f,if xoy := f(é,x,
quasigroup.

If a is a unary left invertible in a semigroup (Q;-), i.e. the left translation L, is a permutation
of @, then e := L;!(a) is a left neutral element in (Q;-) and a! := L;?(a) is an inverse
to a. The same is true for a right invertible element. Therefore, the ‘old” and ‘new’ notions of
invertibility of elements coincide.

An element 0 € ) will be called non-singular for an operation f defined on @, if there
are integers i and p such that O is binarily ip-invertible and the element a := f(0,...,0) is
unarily i-invertible or unarily p-invertible for f.

Theorem 3. Let 0 € ) be a non-singular element for some operation from ). Then the
algebra (Q;Y) is medial if and only if there exists an Abelian group (Q;+,0), a set E of
pairwise commauting endomorphisms of (Q;+,0) and a set A C Q of elements such that for
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every operation g € () there exist endomorphisms Vg, V1, ..., ¥y from E and elements
ag € A such that

9(Yos - -+ Ym) = Yoyo + Y1y1 + -+ + YYm + ag, (7)

tg(an) = pn(ag) (8)

forall g, h €, where pg = Yo+ + ...+ ¢y —t.

Proof. Let 0 € () be a non-singular element for an operation f € 2 for some i < p. We

. . . S
introduce the following notations: ¢ denotes c,c,...,c and
——
s times
j n—j \

roy = f(éaxu 0 'Y, 0 )7 T*Y = f(&7xap_gl_17y7nc_bp)7 (9)

n—1i

0:= )\;1(0), x = f(é,x, 6_) pp(z) == f(g,x,

n—p

a). )

ip-invertibility of 0 for f implies that (o), A;, A, are invertible operations, that is, (Q;o)
is a quasigroup and \;, A, are permutations of the set ). Non-singularity of 0 for f implies
that p, is a permutation of Q.

1°. Consider the following (n + 1) x (n 4 1) matrix

S OO OO
o OK8 O =
o o o
S O O OO

whose entries are 0 except variables x, vy, u, v. Applying f to each row and to each column,
we obtain the sequences

1 n—p

p—i— i D
a ,uov, a and a,rou, a ,Yyouv, a .

%
a,r oy,

Since the operation f is medial,

1 n—

1 n— —1— D
a ,youv, a ).

a LU0, ap) :f(&,xou,

f(é’7xoy7 8

Taking into account the notations (9), we have an identity:
(zoy)* (uov) = (xou)*(yov). (10)
Putting =y =0 and uw =v = 0 in this equality, we have
pp(uov) =Xy(u) x Ap(v),  pi(zoy) = Xi(z) * Ni(y).

According to the condition of the theorem, the element a := f(0,...,0) is i-invertible or
p-invertible, i.e., p; or p, is a permutation of Q).
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Let p; be a permutation. Since )\; is a permutation, then second identity implies isotopy
of the groupoid (Q;*) and the quasigroup (Q;o). Therefore, (Q;x) is also a quasigroup.
Putting v = 0 in the first identity, we obtain p,\; = p;A,, i.e., p, = pl-)\p)\i_l. Consequently,
pp is a permutation of (). Analogically, one can prove that (Q;x*) is a quasigroup and p; is a
permutation if p, is a permutation.

That is why (10) means that the sextuple (o;x;0;0;%;0) of invertible operations is a
quasigroup solution of the functional equation of generalized mediality. Corollary 1. implies that
the quasigroup (Q); o) is isotopic to a commutative group. Let (3) be 0-canonical decomposition
of (o), ie., (Q;+,0) is a commutative group and o0 = 50 =0. Note a =000 = f(0,...,0).

Applying f to a variable matrix in which all variables are 0 except entries in p-th
column:

p
0 Lop 0
0 Tip 0
0 Tnp 0
we obtain
ppf<x0pa Tipy - - - 7$np) = f()‘p$0p> Apzlpv SR 7)\pxnp)'

Using this relationship, we have

Sl

Pp(x) = ppf O, 0 ) = F(0, 02, 0') = Ady(a),

ie., &= p,'Ai),. Therefore, ¢ is a permutation of Q.
2°. Let 7 be an arbitrary number from 1,n \ p and let us consider a matrix with the
following properties

e ¢ -th column consists of variables but x,;, = 0;
e p-th row consists of 0 but z,; is a variable;
e 7 -th row consists of 0 but z,, is a variable;
e all other entries are 0.

Consequently, if r < p, then the matrix is

i p
0 ZLo; 0 0
r| 0 0 ... Ty 0
0 .. 0
p| 0 Zps 0 0
0 0
0 Tpi ... O 0
P 1 _n—p

Note, the transformation nx := f(0, z, 0 ,0, 0) are not necessary invertible.
Applying f to r-th row, we obtain \,z,,; applying it to p-th row, {z,;; applying f to
the other rows, we obtain \;x;; , where j # r,p. Therefore, the left part of (6) is

f()\i$0i, ceey )\i$(r—1)i, )\pxrpv )\ix(r+1)ia s ,)\ix(p—ni, 5%1, )\i$(p+1)z'> ceey )\z$m)
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Applying f to i-th column, we obtain f(zo;, ..., Zr—1)i; 0, Z(r41)is - - -, Tni) ; applying it to p-th
column, we obtain n,,. Applying f to another columns, we obtain

£(0,...,0,0,0,...,0) = X0 = A\ 10 = 0.

p times n—p times
Therefore, the medial identity (6) for f of the matrix can be written as follows:
f()\ﬂou < )\ﬂ?(r—m, /\pxrpa >\z’l’(7~+1)z‘, cee )\ix(p—l)’h éxpiv >\z‘$(p+1)z‘, cee Aﬂm‘) =

(11)

p—i—1 n—p

= f(é, f(@ois o =136, 0, Zg1yis - - - Tng)y 0, mTpp, 0).
According to (9), the right side of the equality can be rewritten as
= f(Zois - s T(r—1)i> 0, T(r41)is - - - » Tni) © Ny
Applying (3) to the obtained equality, we get an equivalency of the identity (11) to
FNiZois - N (r—1)is ApTrpy NiT(rp1)is - - - s N (p—1)is ETpir NiT(pt1)is - - - » NiTi) = 12
12

(3)
= Oéf(ﬁom <o L(r=1)is 0, T(r4+1)iy - - - Jm’) +a+ 57]%;7-

Let y; := Ny for all j # r,p, yr := \NZyp, Yp = Exp;. Therefrom z; = )\i_lyj for all
JF#TD, Trp =N Yr, Tpi = E 'y, . Hence, if 7 < p, then

FWo, - yn) = afOT o, oo AT Y1, 0,0 i, - -
N Y 1 E MY AT Yt - A ) Fa B . (13)
Hence, (13) with y, = 0 implies
F@Wor - ¥r—1,0,Yri1s -+, Yn) — BN 10 =
=afN Y0, A Y 0N e, A Y1 E T e N s
A ) Fa.
Thus, (13) can be written as
FWor - yn) = FWor - Yr—1,0,Yri1, - - - Yn) — BN 10+ BnA
Denote @y, := —FnA; 10+ AnA ty, -

f(yo, s 7yn) = f(yOa ey Yr—1, anr-i-la ce 7yn) + PrlYr, (14)
Note ¢,0=0.
If » > p, then the matrix is
i p
0 Toi 0 0
p| O Tpi 0 0
0 0
r| O 0 Trp 0
0 .. 0
0 Tni 0 0
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_ r—p-—1 n—r
Denote nx := f((zi(), 6 ,x, 0).
Therefore, the medial identity (6) for f of the matrix can be written as follows:

f()\il’ou cee )\iﬂU(pq)z’, 533pi, >\i$(p+1)i, cee )\z‘fﬂ(rq)i, )\pﬂfrp, >\i$(r+1)i> cee >\i$ni) =

p—i—1 n—p

= f(07 f(xﬂh coey T(r—1)i, 07 T(r41)iy - - - >xni)> 0 s Nyp, 0 )

Since we have obtained the same equality as above (see (11)), the relationship (14) is true.
Therefore, we can use it for all 7 # p. As a result we obtain

n—p

p
FWos - un) = @ovo + -+ Gp—1Up—1 + Pprr¥prr T -+ Ontin + f(0, 5, 0).
Moreover,

" N C) ®)

p 7
f(0>ypa 0):f(0,0, 0 y Yps O):Ooyp:a0+a+ﬁyp:¢pyp+av

where ¢, := 3.
Thus, we have a canonical decomposition for f:

TWos-- - Yn) = Yoo + @191 + -+ + QnlYn + a. (15)

Using this relationship, we get

A n—i

Ai(z) = f(0,z, 0) = pix+a.

Consequently, p;x = \i(x) —a so ¢; is a permutation of (). The invertibility of ¢, can be
verified analogically.

3°. To prove that ¢q, ..., @, are endomorphisms of (Q;+), we replace all variables
with 0 in (6) (g = f) except z,; and xz,,, where r is an arbitrary integer from {1,...,n}:

r p—i—1 n—p n—r i n—r p—i—1

f(ovf(oawria 0 y Trp, 0 )a 0 ) = f(oaf(07$ria 0 )7 0 >f(07x7’p7 0 )7 0 )
Using (15), we obtain

7 p—i—1 n—p r n—r r n—r
‘Prf(())xm’a 0 y Urp, 0 ) +a= szf(oa Lriy 0 ) + Qppf(oaxrpa 0 ) + a.
Therefrom
Or(PiTri + QpTrp + a) = Pi(@rTri + a) + Op(Prr, + a),
Since ¢; and ¢, are permutations of the carrier, we replace z,; with ¢; 1z and Zyp With
v, (y—a):
or(z +y) = piRapro; T + ©pRapr R0y 'y,

where R,z := r+a. It means that (;R.0,0; %, gppRaer_a@;l, ©r) is a homotopy of the group

(Q;+,0) into itself. According to Lemma 1., there exists an endomorphism 6 and element c
such that ¢, = R.0. But ¢,0 =0, then ¢, = 6. Hence ¢, is an endomorphism for all r.
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4° . To prove that an arbitrary operation g of the arity m+1 has a canonical decomposi-
tion on the group (Q;+), we consider a matrix of the size m x n:

? p
0 Lo 0 0
0 0
0 x(r,l)l 0 0
r| 0 0 Trp 0
0 T(r41)i 0 0
0 . e |
0 Y | R |
In this matrix, = is an arbitrary integer from the set {1,...,m}, x,, and x; with j # r are

variables, all other entries including x,; are 0. Applying f to the rows and ¢ to the columns,
we obtain

GNiois - N (r—1)i> ApTrps NiT(r41)is - - 5 MiTmi) =
= f(&, 9(X0iy - -+, Tr—1)is 0, T(rp1)iy - - - ,xmi),p_cib_l, ArZrp, nc_Lp).
Denote y; := A\zj; for j #r and y, :== A\yz,, and apply (15):
9o, -+ Ym) = @igA Yo, - AT Y1, 0,0 Wt A Ym) + XU (16)

for some transformation x of the carrier ). In particular, if y, = 0 we have

QDig(/\i_lflf[)i? ey )\i_lﬂf(rfl)i, 0, )\i_lx(r+1)i, ey )\l_liﬁmz) =
- g(y[b sy Yr—1, 07 Yr41y - - - 7ym) - XO
Putting the obtained relation in (16) and denoting 1,y := —x0 + x¥, , the equality (16) can
be rewritten as
g(y07 ... J/m) - g(y07 s ay'l‘—laoay’l‘-i-la s aym) + @Dryr

for some unitary transformation 1, , i.e., with the property ,0 = 0. Since r is an arbitrary
integer, (7) holds.

5°. To prove that an arbitrary coefficient of an arbitrary operation ¢ is an endomorphism
of the group (Q;+), we consider a m X n matrix

v p
0 0 0 0
0 0
1] O Ty Tip 0
0 P |
0 o ... 0 ... 0

In the matrix, all entries are 0 except z; and z;,. Apply f toits rows and g to its columns:

p—i—1 n—p  ,_ n—1u p—i—1 7 n—i n—p

g(a7f<oaxiia O xipa 0 )a a'r) :f(algag(oaxiia 0 )7 ag 79(07$ip7 O )7 ag)'

Taking into account (15) and (7), we obtain
Vr(0iTri + OpTrp + b) = YTpi + 02y
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for some permutations v and § of () and an element b € ). Let = := vz, vy := @pT,p + 0.
Since ¢; and ¢, are permutations of Q,

Ur(x 4+ y) = o7 (@) + 0, Ly ().

Therefore, (yy; !, 590;1[/1;17 1) is an endotopism of the group (Q;+). According to Lemma 1.,
Vyx = 0z + ¢ for some endomorphism 6 and element c. Since 1,0 = 0, the element ¢ is 0.
Thus, 1, is an endomorphism of (Q;+).

6°. Suppose g and h are arbitrary operations from €2 of the arities m +1 and s+ 1
respectively. Denote a 0-canonical decomposition of h by

h(zo, ..., xs) = Xo%o + X181 + -+ + Xss + Q. (17)

To prove that the endomorphisms ¢; and X, commute, consider a matrix whose all entries
are 0 except z;. Applying (7) and canonical decomposition of h, we obtain an equality

Vixr(Tjr) +b = x,05(z4) + ¢

for some elements b and ¢ from @ . The desired property follows from this equality and b= c.
The last one can be obtained putting z;. = 0.
7°. Consider (m + 1) x (s + 1) matrix whose all entries are 0. Apply h to its rows and
g to its columns:
glap, ... apn) = h(ay, ..., ay).

Using the canonical decompositions of g and h, we obtain
Yoap +Yrap + ...+ Yman + ag = Xog + X10g + ... + Xsag + an,

ie.,
Yoap + Yrap + ...+ Ypap — ap = Xoag + X109 + ...+ Xs0g — Q-
It means that pyan = ppa, .
Thus, we have proved all items of the theorem.

Vice versa, assume all items of the theorem are true. Let us prove the truth of the identities
of mediality

g(h(xeo, - -3 %0s)s o s R (Lo, - -y Tins)) =

= h(g(zo0, -+, Tmo), - -, 9(Toss - - -, Tims)) (18)

for every pair (g,h) of operations from €. Suppose (7) and (17) are their 0-canonical
decompositions, where 0 is the neutral element of the commutative group (Q;+). To prove
the identity (6), we calculate its left and right sides:

g(h(zoos - -y 20s),s -+ o s R (Timoy - -+, Tins)) @

= Poh(zo0, - -, Tos) + - + Vinh(Tmo, - . ., Tins) + a4 (L0
= o (D01 o Xioi + an) + -+ m Q0o XiTmi + an) + ag =

= (Do Yoxizoi) + -+ O isg YmXiTmi) + Yoan + . ..+ Umay, + a4 @
= Ziﬁio Z;:o YiXjTi; + fgp + ap + ag.
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(17)

h(Q(l’OOa o ;$m0)7 s 7g($057 s ,.’Ifms)) -
(7)

= X09(%00, - - - s Tmo) + - - - F Xm9(Xos, - - - s Tins) + ap =

= Xo (2;10 ixio +ap) + ...+ X (2210 UVilim + ap) + Qg =
(2)

= (O o xoviTio) + ..+ Qo XmWiTim) + Xoan + - .. + Xman + ag =
=Y ico ijo XjWitij + pnag + ag + ap.

Since x;v; = ¥;x; for all i, j and ppay, = pgap, the obtained expressions are equal and
therefore the identity (18) has been proved.

Corollary 2. Let {0} be a sub-algebra of a universal algebra (Q;) and the element 0 is
binarily invertible for an operation from ). Then the algebra (Q;<)) is Abelian if and only if
there exists an Abelian group (Q;+,0) and a set E of its pairwise commuting endomorphisms
such that every operation from Q is a repetition-free composition of (+) and endomorphisms
from E.

Corollary 3. Let (Q;f) be an (n+ 1)-ary groupoid which has a binarily invertible element.
Then (Q; f) is medial if and only if there exists an Abelian group (Q;+) , its pairwise commuli-
ng endomorphisms ¢o, ..., pn and element a € Q such that (15) holds.

Corollary 4. [3/ An (n + 1)-ary quasigroup (Q;f) is medial if and only if there exists an
Abelian group (Q;+), its pairwise commuling automorphisms ¢o, ..., ¢n and an element
a € Q such that (15) holds.

Corollary 5. [3/ A binary quasigroup (Q;o) is medial if and only if there exists an Abelian
group (Q;+), its commuting automorphisms ¢ and 1 and an element a € Q such that

xoy=pr+Yy+a.

Conclusions

In [4], [5] and here, it is proved that every medial algebra having ragular or non-singular
element is affine, i.e., there exists a comutative semigroup, a set of its pairwise commuting
endomorphisms FE and a set of element M such that every operation of the algebra is a
repetition-free composition of the semigroup operation, endomorphisms from FE and elements
from M . The question: Are there medial algebra with another structure of operations? is still
open.
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PO3KJIAIN OIIEPAIIIN MEJIAJIBHUX I ABEJIEBUX AJITEBP
Deqnip Coxanpkumii

npogecop Kapedpu MamemamuuHo20 aHaAi3y i OuPBePeHUIAAbHUL PIBHAHD,
Joneuvruti Haytonarvrul yrisepcumem imeni Bacuasa Cmyca

PE3IOME
Hexait A — m xn marpung 3minaux. KaxkyTs, mo n-apHa onepariisi f i m-apua omepariis g
3a0060AbHAIOMY MEDIAALHOMY 34KOHY, IKIIO TAKUX JIBA Pe3YJIbTATH OIHAKOBI: 1) 3aCTOCY BAHHS
f o psakis marpuni A, a TOTiM ¢ 0 OTPUMAHOIO CTOBIIIS 1 2) 3aCTOCYBaHHS ¢ JIO0 CTOBIIIIB
matpuri A, a moriMm f 70 OTpEMaHOrO psaKa. YHiBepcasibHa aiarebpa (A;€)) Ha3WBaETHCS:
medianvroro, STKIO KOXKHI JIBi omepalii i3 () 3a10BOJIBHAIOTH MeIIaIbHOMY 3aKOHY; GOEAE6010,
SIKIIO BOHA Me/Iia/IbHa 1 Ma€ OJHOEJIeMeHTHY Iigaaredpy. 3Haiiaeni kpurepii ‘OyTu Me1iaabHO0
aaredbporo’ i Kputepiit ‘OyTu abesieBOI0 YHIBepCAJIbHOIO ajarebporo’ Ui yHIBEPCAJIbHUX aJredp
(A;Q), axi matote 0 € Q i f € Q maki, mo tepm f(zo,...,T,) BU3HAYAE KBA3IrPyNOBY
olepariio, KOoJu BCl 3MIHHL JOPIBHIOIOTH O OKpIM x; 1 T),, a TaKOXK BU3HA4a€ I1JICTAHOBKY,
axuo Bei 3minui € f(0,...,0) okpiM x; abo OKpiM x, mJs JedKuX pisHUX 7, P.

Karwduosi caoBa: wmediarvricmo, mediasviutll 36K0H, MeNaNbHa ar2edpa, an2ebpa et-
domopdizmis, abesesa ynisepcarbra anzebpa.

DPenop Coxarkmii

npogeccop Kadeopvr MAMEMAMUYECK020 GHAAU3A U JUPPePeHuuarvHuT YPasHeHU,
Joneurutl Hayuonarvhold yrusepcumem umenyu Bacwas Cmyca

PA3JIOXKEHN A OIEPAIII MEINAJIBHBIX U ABEJIEBBIX AJITEBP
PE3IOME

I[Iyctb A — m X n Marpuia mepeMeHHbIX. [0BopaT, 9T0 n-apHas omeparus f U m-apHas
ormepanusa ¢ YIoAEMBOPANM MEIUAALDHOMY 3aKOHY, €CIH CJCIVIONNX IBa Pe3yJbTaThl OIH-
HAKOBBI: 1) mpuMeHeHue [ K CTPOKAM MATpHIBI A, a 3aTeM ¢ K MOJYYeHHOMY CTOJIILY U 2)
HpUMEHeHHne ¢ K crojnnaMm marpunbl A, a 3areM [ K MOJYyYEeHHOH CTPOKE. YHUBEPCAIbHAs
anrebpa (A; Q) maspiBaeTcsa: mMeduaabrotl, eCan KaxKape JBe omeparnun u3 ) yIoBIeTBOPSIOT
MeIUAJTBHOMY 3aKOHY; abenesotll, €Cu OHA MeIuajbHa U UMEeT OJHOIJIEMEHTHYIO IMomaaredpy.
Haiiiensl Kputepuii ‘ObITh Me uaIbLHON agaredpoit’ u Kputepuit ‘ObITh abeIeBOil yHUBEPCAJIBHOM
anrebpoit’ mst yuusepcaabubix anredp (A; ), koropse mmetor 0 € Q u f € ) Takue, 41O
repm  f(Zg, ..., T,) OUPEIEISET KBABHIPYIIOBYIO ONEPAIUIO, €CJIH BCe IepeMeHHble paBHbl ()
KPOMe T; U T, a TaK¥Ke OIpeJe/ser HOJCTAHOBKY, ecan Bce mepementbie pasusr f(0,...,0)
KpOMe x; WJIN KPOMe I, JJisi HEKOTOPBIX PA3HBIX 7, P .

KuaoueBsie caoBa: meduansvbHocmy, meduasvruili 3akoH, Meduarvras arzebpa, arzebpa
IHIOMOPPUIMO8, abesesa YHUBEPCANDHAA af2e0Da.

96 Fedir Sokhatsky



