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Inroduction

We continue classification of functional equations on invertible functions, i.e., quasigroup
operations (2, 5, 4, 7, 8, 9, 10, 11, 12].

A functional equation is understood as a universal quantified equality of two second order
terms consisting of functional and individual variables. The number of all functions is called
a functional length. A functional equation is called: generalized, if all functional variables are
pairwise different; ternary, it all functional variables are ternary; quasigroup, if all functional
variables are supposed to take their values in sets of invertible operations. A ternary operation
f defined on an arbitrary set () is called invertible, if for all elements a and b each of the
terms f(z,a,b), f(a,z,b), f(a,b,x) establishes a permutation of Q.

Some functional equations are equivalent to a systems of shorter equations. That is why
it is very important to classify functional equations of small lengths. In this article, we give
full classification of generalized ternary functional equations of the length one (Theorem 1.)
and of the length two (Theorem 2.). The classification is done up to parastrophically primary
equivalence (two functional equations are parastrophically primarily equivalent if one can be
obtained from the other in a finite number of the following steps: renaming functional and indi-
vidual variables, applying the identities which define the invertibility of operations). Moreover,
we have found full solution of each functional equation from a transversal of classes of this
equivalence.

1. Preliminaries

An n-ary operation f defined on a set () is an assignment of exactly one element b from
Q) to every n-tuple (ag,...,a,_1) of elements from . In other words, f is a mapping from
Q" to Q. The set Q is called a carrier, n is an arity of f and we write f(ag,...,a,-1) =0.
The set of all n-ary operations defined on () is denoted by O, . Multiplications of n-ary
operations is defined by

(f®g)(xo, ..., xp-1) = f(zo,.. ., Tim1,9(To, .., Tn-1), Tit1s - Tp1) (1)
1=0,1,...,n—1.
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It is easy to verify, that every of above defined superpositions is associative. Therefore, the
algebra (O,; @, ¢;) is a monoid, where e;(xo, ..., 2,—1) := x; is its neutral element. The monoid

(On; @, e;) will be called i-th symmetric monoid of n-ary operations.
An n-ary function f is called:

e i-th invertible, if it is invertible in the i-th symmetric monoid, the inverse [If will be
also called an i -th division of f;

o invertible, if it is i-th invertible for all ¢ =0,...,n —1;
o [eft invertible, if it is 0-th invertible;
e right invertible, if it is (n — 1)-th invertible.

If an operation f is invertible, then the algebra (Q; f,f ... ["=1f) is called a quasigroup or
an n-ary quasigroup. Consequently, an algebra (Q; f, %, ..., ["=1f) is called a quasigroup, if
it satisfies the following identities:

fxo, . wimy, Of (20, .. T 1), Tits -+, Tpy) = 5,
O (20, ..y i1, F(20s - oy Tpe1)s Tigds e oy Tne1) = T4, (2)
1=0,...,n—1.
Denote z,, := f(xo,...,2n_1), then (2) is equivalent to
(20, .. @ity Ty Tigts -y Tne1) = i & f(To,. . Tnot) = Tn.
Giving a character [i] the value (i,n), i.e., a permutation of the set {0,1,...,n}, we obtain
G (Do, - oy Timty TiGinys Ti 1y - - s Tne1) = Tp(im) &
& f(zoy. -y Tn1) = Tp.
The cycles (0,n), ..., (n—1,n) generate the symmetric group S, 41 of the set {0,1,... ,n}.

Therefore, there exist (n + 1)! operations to every n-ary invertible operation and all of them
are defined by the relationship

Uf<x007 s 737(71—1)0) =Tnoe < f(x(b s 7xn71) = Tn,

where o belong to the symmetry group S,y of the set {0,1,...,n}. All of the operations are
called parastrophes of f and °f is called o -parastrophe of f. It is easy to verify the validity
of the formula

() =""1
for every invertible operation f and all permutations o,7 € S,,;. This relationship means
that the group S,.1 acts on the set of all n-ary invertible operations A,, . In particular, the
parastrophic symmetry group Ps(f) defined by

Ps(f) :=={a |°f = [}
is a stabilizer under this action. Thus, parastrophes "f and °f coincide if and only if
T € oPs(f), so, the set of all different parastrophes of the given invertible operation f is

{7f [0 €T},

where T is a coset transversal for the sub-group Ps(f) of the group S,.;. Consequently,
the number of different parastrophes of an invertible operation f equals the index of its
parastrophic symmetry group in S,1, i.e., (n+ 1)!/|Ps(f)].
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Unary quasigroups (n =1). There is only one symmetric monoid (Oq; @, ep) . It is a well-
0

known symmetric monoid of transformations of the set Q: (&;o0,:). Therefore, every unary
invertible operation f has exactly one inverse If = f=! and the defining equality (2) means

fofl=flof=u
Thus, an algebra (Q; f, f~!) is a unary quasigroup, if the identities
[ ) =2, [Hf(x) ==

hold. An arbitrary unary inverse operation f has 2! = 2 parastrophes, f and f~!.

Binary quasigroups (n = 2). There are two symmetric monoids: (Og;®,€p) and
0
(O2;®,e1), where Oy is the set of all binary operations defined on @ ; the superpositions
1

@ and @ are left and right multiplications of binary operations:
0 1

U@gmawzf@@w%w’ (f ® 9)(z,y) = f(z,9(z,y));

the operations ey and e; are selectors: eg(x,y) := x, ej(x,y) := y. Therefore, an algebra
(Q; f,°f,"f) is a quasigroup if the following identities

ﬂ?@y%)zx F(f@y).y) ==

f@,"f(e,y)) =y, "flo, fzy) =y
are true, where ¢ := [0] = (13), r = [1] = (23), s := (12). Consequently,
Ss:={u,l,r,s,sl,sr}.

Ternary quasigroups (n =3). There are three symmetric monoids:
(03;%9760)7 (O:ﬁ?,el), (03;?762),

where Oj is the set of all ternary operations defined on (@ ; the superpositions &, @ and &
0 1 2

are left, middle and right multiplications of ternary operations:
(f@9)(@,y,2) = flg(z,y,2).y,2),  (f©9)(x,y,2) = flz,9(z,y,2), 2),
(f©9) = flx,y,9(z,y,2));

the operations ey, e, ey are selectors:

60(55,:1/,2) =z, el(ajay?Z) =Y, €2(.T,y,2) =z
Therefore, an algebra (Q; f,O)f [f 2If) is a quasigroup, if the following identities
FOf (2,y,2),y (2, 2),y,2) = a,

f@“’@y,)@—y,mﬂ%f@wwhdzy, (3)
fla,y, B (2,y,2) = 2, Bf(z,y, fz,y,2)) = 2

) is
2) =

are true.
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Some definitions. Let ¢§; denote the main diagonal the cube of its values, i.e.,
df(z) == f(x,...,x). An operation f is called main diagonal, if d; is a permutation of the
carrier.

For an arbitrary ternary operation [, we define binary operations (<l>) , (72) , ((,?) by the

equalities
voy:=flz,yy),  woy:=fly,wy),  woy:=[fl(y.y 1) (4)
and we will called them left, middle and right diagonal operations respectively.

An ternary operation f will be called left, middle and right neutral operation, if it satisfies
the respective identity:

f@yy) == flyzy =z [flyyz)== (5)

A ternary quasigroup is said to be totally symmetric, if all parastrophes coincide. Followi-
ng [6], a neutral totally symmetric quasigroup will be called a Steiner quasigroup.

Functional equations. In this articles, we study functional equations which can be consi-
dered on arbitrary sets. Namely, let T} and 75 be terms which consist of functional and indivi-
dual variables, i.e. they do not have functional and individual constants. Universally quantified
formula 77 = T, is called a functional equation see|l, 3.

A value of lexicographic sequence of all free functional variables of the given functional
equation is called its solution, if the equation becomes an identity after substituting the value
for functional variables. The set of all solutions defined on the same set is called a solution set
of the equation.

A functional equation is called:

1. quasigroup if its functional variables present quasigroup operations;
2. generalized, if all its functional variables are pairwise different;
3. trivial, if it has solutions only on one-element sets.

For example, a functional quasigroup equation is trivial, if one of its individual variables has
only one appearance.
Two functional equations are called:

1. equivalent, if they have the same solution set on every carrier;

2. parastrophically primarily equivalent, if one can be obtained from the other in a finite
number of the following steps:
applying the quasigroup hyperidentities (3);
changing the sides of the equation;
renaming the individual variables;
renaming the functional variables.
Each of these items does not change the number of different individual variables.
Therefore, if functional equations are parastrophically primarily equivalent, then they have

the same number of different individual variables. In other words, the following assertion is
true.
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Lemma 1. If functional equations do not have the same number of different individual vari-
ables, then they are not parastrophically primarily equivalent.

Lemma 2. Let functional equations wiy = vy and ws = vy be parastrophically primarily equi-
valent. Then there exist permutations oq, ..., om_1 of the set {0,1,2,3} and a permutation T
of {0,...,m — 1} such that for every solution (fo,..., fm-1) the tuple (“°for,...."" ‘fm—1)7)
18 a solution of wy = vs.

Let a functional equation contain m independent variables. We say that a quasigroup
(Q; f) is a solution of w = v if the tuple (f,..., f) is its solution.
e—

m times

Corollary 1. If a totally symmetric quasigroup is a solution of a functional equation and it
1s not a solution of another equation, then the functional equations are not parastrophically
primarily equivalent.

2. Classification of ternary functional equations

Functional equations of the length 1. Since every non-trivial quasigroup functional
equation has at least two appearances of each individual variable, the following statement
is true.

Theorem 1. Fvery ternary quasigroup functional equation is parastrophically primarily equi-
valent to an exactly one of the equations:

F(z,z,x) =z, (i) F(z,y,y) =z. (i) (6)
Proof. A quasigroup functional equation in one a functional variable has the form
F(uh U2, U3) = Uy,

where the set {uy,us,us, us} consists of one or two different individual variables. If it has one
variable, then the equation is (7). Otherwise, renaming the individual variables, we obtain one
of the following functional equations:

F(r,y,y) =z, (a) F(y,z,y)=xz, () Fly,y,2)=xz. (c) (7)

Permute the first and the second variables in (b) and also the first and the third variables in

(c):
Rz yy) =z, I) Rz, y,y) =z ()

Replacing "F and U3F with F, we obtain (i) .

Suppose, the equations (i) and (i) are parastrophically primarily equivalent. Therefore,
for every solution f of (i) some parastrophe of f is a solution of (ii). Let Zs be the ring of
integers modulo 5. An operation f defined by

flz,y,z) :=2x + 2y + 2z
is a solution of the quasigroup equation (7):

flz,x,x) =22 + 22 + 22 = 6 = x.
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The operation f is invertible and all its divisions are
Of(2,y,2) =3 —y—2,  f(r,y,2) = -z +3y -z
UDf (2, y, 2) = —v —y + 32.
For example,
F(PDf(z,y,2),y,2) =203z —y — 2) + 2y + 22 = 62 — 2y — 22 + 2y + 22 = x.

All other equalities are proved in the same way. It is easy to see that S3 C Ps(f), then f has
not more than four different parastrophes. The operations f, Mf, CYf  GYf are evidently
pairwise different and they are all parastrophes of f. But none of them is a solution of (#7):

f0,1,1)=0-14+2-14+2-1=4+#0, Uf(0,1,1)=-0+3—-1=2+#0,

12£(0,1,1) =0—-1—-1=3#2, 9£(0,1,1) = -0 —-1+3=2#0.
A contradiction (see Lemma 2.). Thus, the functional equations (i) and (i¢) are not
parastrophically primarily equivalent. O

Functional equations of the length 2. For these functional equations the following
theorem is true.

Theorem 2. Fvery ternary quasigroup functional equation is parastrophically primarily equi-
valent to exactly one of the equations:

Fi(z,z,z) = Fy(z,z,x), (8)
Fi(z,z,2) = Fy(2,y,y), (9)
Fi(z,z,y) = Fy(z,z,y), (10)
Fi(z,z,x) = Fa(y, 9, 9), (11)
Fy(z,2,y) = Fa(z,y,9), (12)
Fi(z,x,y) = Fy(y, 2, 2), (13)
Fi(z,y,z) = Fy(z,y, 2). (14)

Proof. Every ternary functional equation in two functional variables is a formula:
Fy(ug,ug, uz) = Fo(ug, us, ug), (a)
if functional variables are in both sides of the equality and one of the formulas

Fy(Fy(uy, ug, us), ug, us) = ug, Fy(uy, Fy(ug, us, uq), us) = ug,

Fl(ul7u27 FQ(U’37U47U5)) = Us,

if functional variables are in the same side. The last three equalities are reduced to (a) using
(3).

Thence, it is enough to consider the case (a). Since a non-trivial quasigroup functional
equation is under consideration (a), then every individual variable has at least two appearances.
Therefore, the set {uy,...,ug} say, a variable set, can have one, two or three elements.

If the variable set has one element, then the equation is (8). If the set has three elements,
then every individual variable appears twice. Consequently, there are two possibilities: the left
side of the equality has two different variables and then it is (13), and it has three different
variables and then it is (14).

Let the variable set have two elements. Therefore, there are two possibilities:
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e one of the variables, say y, appears twice. If the appearances are in the same side, then

it is the identity (9) otherwise it is (10);

e cach of the individual variables appease thrice. If all appearances of a variable are in the

same side, then the equation is (11). Otherwise, it is (12).

It remains to prove the non-equivalency of the equations (8)—(12). The proof is given in

the following table.

| | (9 [ o | an [ (q2) | (13) | (14) |
(8) || Lem 1. | Lem 1. | Lem 1. | Lem 1. | Lem 1. | Lem 1.
9) X Ex 1 | Steiner | Steiner | Lem 1. | Lem 1.
(10) X X Steiner | Steiner | Lem 1. | Lem 1.
(11) X X X Ex 2 | Lem 1. | Lem 1.
(12) X X X X Lem 1. | Lem 1.
(13) X X X X X Ex 3

If in the cell which is on the intersection of (i)-th row and (j)-th column is ‘Steiner’, then an
arbitrary nontrivial ternary Steiner quasigroup is a solution of one of the equations (i), (j) and
it is not a solution of the other equation. According to Corollary 1., they are not parastrophi-
cally primarily equivalent. For example, let ¢ = 10, j = 11 and let (Q; f) be a ternary Steiner
quasigroup. Since a ternary Steiner quasigroup satisfies the identity f(z,x,y) = y, then the
pair (f, f) is a solution of the equation (10). According to Lemma 2., there are two permutati-
ons o, 7 of the set {0,1,2,3} such that the pair (°f,"f) should be a solution of the equation
(11). By definition, a Steiner quasigroup is totally symmetric, i.e., all of its parastrophes coi-
ncide. Therefore, the pair (f, f) should be a solution of (11), that is f(z,x,z) = f(y,y,y)
is an identity. Since a Steiner quasigroup is idempotent, this identity is equivalent to =z = y.
Consequently, the quasiqroup (Q;f) is trivial. The obtained contradiction implies that the
pair (f, f) is not a solution of (11). Thus, by the Corollary 1. the functional equations (10)
and (11) are not parastrophicaly primarily equivalent.

If in the cell which is on the intersection of (7)-th row and (j)-th column is ‘Lemma 1.’
then the equation (i) and (j) have different number of different individual variables and
according to Lemma 1., they are not parastrophically primarily equivalent.

(9), (10), Example 1. Let Zj3 be the ring modulo 3 and let h(z,y,z) =z +y+ z.
Suppose the equations (9), (10) are parastrophically primarily equivalent. According to
Lemma 2., there exist permutations o, m of {0,1,2,3} such that for each solution (f, f) of
the equation (10) the pair (°f,”f) is a solution of (9).
Since the group (Zs;+) is commutative, then the parastrophic symmetry group of
the operation A includes S;. Consequently, the operation A has not more than 4 different
parastrophes. It is easy to verify, that

Oh(z,y,2) = —c+y+2 Bhz,y2)=c—y+2z Phiryz2)=c+y—=2

Therefore, all different parastrophes of h are h, 3, (13 (@)
It is easy to see, that the pair (”ﬂh, “71h) is a solution of (10), then the pair

(ao”lh’ ﬂailh) — (h, Tra’lh)
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is a solution of (9). It means that the identity
0="""h(z,y,y)

holds. Tt is enough to consider the last identity for mo~! € {1, (01), (02), (03)} . In these cases,
we have
O=2x+2y, O0=—-2+2y, O=2z 0=u=x.

But it is possible only if the carrier is singleton, i.e., the solution is trivial. The obtained
contradiction proved that the functional equations (9) and (10) are not parastrophically pri-
marily equivalent.

(11), (12), Example 2. Let an operation h be defined as in Example 1.

Suppose, the equations (11), (12) are parastrophically primarily equivalent, then there
exist permutations o, 7 such that for every solution (f,f) of the equation (11) the pair
(°f,7f) is a solution of (12). Let us prove that these is wrong.

It is easy to see that (h,h) is a solution of (11), then the pair (%, 7h) is a solution of (9),
i.e., for all x,y € Zs we have

Wz, z,y) ="h(x,y,y). (15)
Taking into account that A, ®h, (3 3} are all different parastrophes of h, we obtan
x4+ 2y, ifo=u,

h(z,xz,y) =< 2y, ifo=(14) or o = (24),
x+vy, if o =(34),

20 4y, ifm =1,
W,z y) =< x4y, if 7= (14),
2z, if 7= (24) or o = (34).

In all these cases, (15) implies a contradiction. Indeed,

(13), (14), Example 3. Let (Q;+) be an arbitrary group of exponent two, (Q;-) be a
group, which is not isomorphic to (Q;+). Define operations h and g:

Mz, y,z) =z +y+z, g(z,y,2) =a-y- 27 (16)

then the quasigroup (Q;h) is Steiner. The pair (g, h) is a solution of (13). If the pair (%, h)
or the pair ("h,%) for some o, 7 is a solution of (14), then the quasigroups (Q;h) and (Q;g)
are parastrophic. Therefrom, the groups (Q;+) and (Q;-) are isomorphic. A contradiction.
Thus, the equations (13) and (14) are not parastrophically primarily equivalent. O

3. Quasigroup solutions of (8)-(14)

Proposition 1. A pair (f,g) of invertible functions is a solution of the equation (8) if and
only if their main diagonals are the same.

Proof. A pair (f,g) is a solution of (8) on a carrier @ if and only if the identity
flz,z,2) = g(z, 2z, 2)

holds for all z € (). This relationship is equivalent to d; = d,. O

104 F. Sokhatsky, H. Krainichuk, A. Tarasevych



ISSN 1817-2237. Bicuuk JouHY. Cep. A: Ilpupoaguuui Hayku. - 2017.- Ne 1-2

Proposition 2. A pair of invertible functions (f1, f2) defined on Q is a solution of (9) if and
only if there exists a left neutral invertible operation h and a permutation o of Q) such that

Proof. Let a pair (fi, f2) of invertible operations is a solution of the equation (9), i.e., the
identity
fl(x,x,x) - f2(x7y7y)
holds. Therefrom, fo(x,y,y) = §1(x) therefore
(14)f2((51(x),y,y) = . (17)
Define an operation h
h(z,y,2) = " fo(81(x), y, 2). (18)

The relationship (17) implies that the operation h is left neutral. But from (18) it follows that
it is isostrophic to f,, that is why it is invertible.
Vice versa, note if h is left neutral, then (A is left neutral as well. Therefore,

folw,y,y) =0z, Wh(z,y.y) = d(x) = fi(z,z,2).
O

Proposition 3. A pair of invertible operations is a solution of the functional equation (10) if
and only if thewr left diagonals coincide.

A ternary operation f defined on @) is called unipotent, if there exists an element a € @)
such that for all = € @ the equality f(z,z,x) = a holds.

Proposition 4. A pair of ternary invertible operations is a solution of the functional equation
(11) if and only if they are unipotent and the element of unipotency is common.

Proposition 5. A pair of ternary invertible operations (f,q) is a solution of the functional
equation (12) if and only if a dual operation to the left diagonal of the operation f coincides
with the left diagonal of the operation ¢ .

Proof. Let a pair of ternary invertible operations (fi, f2) is a solution of the functional
equation (13), i.e.,

fl(aja xz, y) = f2(y7 2y Z)
In particular when 2z =a € O, we have

fl(xwray) =ay
for some permutation « of the set (). This equality implies
fl(l’,ﬁﬁ,@ily) =Y.
Hence, an operation h defined by
h(l’, Y, Z) = fl(xa Y, a_lz)

is right neutral. It is invertible because it is isotopic to an invertible operation f;. Therefrom

fi(z,y, z) = h(z,y, az).
Thus, f2(y,z,2) = ay = ah(z,z,y). a
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Proposition 6. A pair of ternary invertible operations (f1, f2) is a solution of the functional
equation (13) if and only if there exists a right neutral operation h and a permutation o such
that

fl(a:,y,z):h(:c,y,az), fg(y,z,z):ah(:c,x,y).

Proposition 7. A pair of operations is a solution of the functional equation (14) if and only
iof they coincide.

Conclusion

Classifying functional ternary functional equations on invertible functions defined on an
arbitrary set, the following results have been obtained: there exist two ternary functional

equations of the length one (Theorem 1.) and seven functional equations of the length two
(Theorem 2.).
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KJIACU®PIKAIIIA Y3ATAJIbBHEHUX ®VHKIIMHNUX PIBHSIHb HA
TEPHAPHUX KBASII'PVYIIAX

®. Coxanpkuii, I'. Kpaiiniuyk, A. TapaceBuyu

L dokmop .-m. nayx, npodecop wadedpu mamemamunnozo anarizy ma oudepenyiaabHur
PIBHAND,

2 emapuwuti suraadan wadedpu Mamemamunto20 anaisy ma JudepenyiaaoHuL pieHAND,
Joneuvruti naytonasvhut ynisepcumem imeni Bacuaa Cmyca

3 acnipanmrka 2 Kypcy ParysbmMemy npoepamycanta ma KoMn 10mepHuT i
MENEKOMYHIKGUITHUT cucmem, XMesbHUuUbKkul HOUIOHGAbHUT YHIBEPCUMEM,

PE3IOME
3 TOYHICTIO /10 TapacTpodHO MePBUHHOI €KBIBAJIEHTHOCTI BCTAHOBJIEHO KJIacUMIKAIIO y3araib-
HEHUX TepHApHUX (hYHKIIHHUX PiBHAHL (DYHKIIAHOL 10BKHHE 1 1 2 Ha 000pOTHUX (DYHKIIISX,
3a/IaHUX Ha, JIOBLJILHOMY HOCIEBI.

KarwduoBi caoBa: meprnapra keasiepyna, obopomua Gynryin, Gyrkuitine pienars, na-
PACMPOPHO NEPBUHHA PIBHOCUALHICTID

®. Coxanxkunii, I'. Kpaititanayk, A. Tapacesu4a

L dokmop .-m. nayx, npodeccop kadedpv MaMeMAMUECKO20 GHAAUSAE U
dugpdepenyuanrvrus ypacrerul,

2 emapwuti npenodasament Kadeopvt MAMEMAMUNECKO20 aHAAU3A U JUDHEPEHUUANOHHLT
YPasHeHU,
Jloneykuti nayuonarvrold yrusepcumem umenyu Bacwas Cmyca

3 acnupanmxa 2 kypca ParyAvMema npo2paMMUPOSaAHU, KOMIIOMEDPHHT U
MENCKOMYHUKAUUOHHDLT cucmem, XMeavHuuyKul HaUUuOHAALHOLT YHUBEDCUIMEm

KJIACCUPUNKAIINA OBOBIIIEHHBIX @YHKIIVTOHAJIbHBIX
YPABHEHUI HA TEPHAPHBIX KBASUTPVIIIIAX

PE3IOME
C TOYHOCTHIO K MEPBUYHO MapacTpo(HON 3KBUBAJEHTHOCTH, HafijgeHa Kjaaccupukaius 0606-
MIEHHBIX TePHAPHBIX (DYHKNUOHAIBHBIX ypaHeHui yHKInoHaJIbHON amunbl 1 u 2 Ha obpaTu-
MBIX (DYHKIIHAX, KOTOPBIE 33aHbl HA TPOU3BOJIHHOM MHOXKECTBE.

KoarodeBbie caoBa: meprapHas k8a3u2pynna, 006pamumas Gyrkyud, GyrkuuoraivHoe
Yypasrenue, NeEPBUYHO NAPACMPoPHas IKEUBAAEHMHOCTIVD.
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