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MINIMAL GENERATING SET AND A STRUCTURE OF THE WREATH
PRODUCT OF GROUPS, AND THE FUNDAMENTAL GROUP OF THE
ORBIT MORSE FUNCTION

The quotient group of the restricted and unrestricted wreath product by its commutator
is found. The generic sets of commutator of wreath product were investigated.

The structure of wreath product with non-faithful group action is investigated.

Given a permutational wreath product sequence of cyclic groups, we investigate its mini-
mal generating set, the minimal generating set for its commutator and some properties of its
commutator subgroup.

We strengthen the results from the author [18, 21, 20] and construct the minimal generati-
ng set for the wreath product of both finite and infinite cyclic groups, in addition to the di-
rect product of such groups. We generalise the results of Meldrum J. [12] about commutator
subgroup of wreath products since, as well as considering regular wreath products, we consi-
der those which are not regular (in the sense that the active group A does not have to act
faithfully). The commutator of such a group, its minimal generating set and the center of such
products has been investigated here.

The fundamental group of orbits of a Morse function f: M — R defined upon a Mobius
band M with respect to the right action of the group of diffeomorphisms D(M) has been
investigated. In particular, we describe the precise algebraic structure of the group mO(f). A
minimal set of generators for the group of orbits of the functions m(Oy, f) arising under the
action of the diffeomorphisms group stabilising the function f and stabilising M have been
found. The Morse function f has critical sets with one saddle point.

We consider a new class of wreath-cyclic geometrical groups. The minimal generating set
for this group and for the commutator of the group are found.
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Introduction

Lucchini A. [10] previously investigated a case of the generating set of C’g_l ! G, where
G denotes a finite n-generated group, p is a prime which does not divide the order |G| and
C, denotes the cyclic group of order p. The results of Lucchini A. [10] tell us that the wreath
product C’;fl ! G is also n-generated. We firstly consider the active group G which is cyclic
and then generalise this wreath product for both iterated wreath products and for the direct
product of wreath products of cyclic groups. It should be noted that a similar question for
iterated wreath product was studied by Bondarenko I. [3].
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Maksymenko S. [11] has proven that the n-th homotopy groups of the orbit O(f), of f,
with respect to the right action of the group, Diff (M), of diffeomorphisms of M | coincides with
those of M for n > 3,i.e. mO(f) =0, while, for the fundamental group m O(f), it is known
that it contains a free abelian subgroup of finite index. Despite this, information regarding
the fundamental group mO(f) remains incomplete. We provide some insight by finding the
minimal generating set and its relations for the group mO(f).

Preliminaries

We denote by d(G) the minimal number of generators of the group G [10, 3|. A di-
ffeomorphism h : M — M is said to be f-preserving if foh = f. This is equivalent to the
assumption that h is invariant each level-set, i.e. f~'(c), c € P of f, where P denotes either
the real line R or the circle S*.

Let G be a group. The commutator width of G [15], denoted cw(G), is defined to be the
least integer n, such that every element of G’ is a product of at most n commutators if such
an integer exists, and otherwise is cw(G) = oo . The first example of a finite perfect group with
cw(G) > 1 was presented by Isaacs I. |7|. The property of commutator widths for groups and
elements has proven to be important and in particular, its connections with stable commutator
length and bounded cohomology has become significant.

Meldrum J. [12] briefly considered one form of commutators of the wreath product A1 B.
In order to obtain a more detailed description of this form, we take into account the commutator
width (cw(G)) as presented in work of Muranov A. [13].

The form of commutator presentation [12| has been given here in the form of wreath
recursion [9] and additionally, its commutator width has been studied.

The subtree of X* (or T) which is induced by the set of vertices UF_ X* is denoted
by X™ (or T.). Denote the restriction of the action of an automorphism g € AutX* to
the subtree X by 9wy xw - It should be noted that a restriction gq|xun is called the vertex
permutation (v.p) of ¢ in a vertex v.

Center and commutator subgroup of wreath product

This work strengthens previous results by the author [18] and will additionally consider
a new class of groups. This class is precisely the wreath-cyclic groups and will be denoted by
$. Let G € &, then this class is constructed by formula:

n ni m
G=(1 Ch)x( 2 Cy)x-x( 1 Cy) 1<k < oo,m < oo,
Jjo=0 Jj1=0 721=0 !

where the orders of C;; are denoted by ;.
It should be noted that at the end of this product, a semidirect product could arise with
a given homomorphism ¢, which is defined by a free action on the set Z. In other words, one

k n
would obtain a group of the form (H GZ-) X 2.
i=1

Note that the last group here is isomorphic to one of the fundamental orbital groups
O¢(f) of the Morse function f. Namely, we have m (S, f |aar) [11].
Consider now the group H = 1 Cj;, whose orders i; for all C, are mutually coprime
j=1
for all j > 1 and whose number of cyclic factors in the wreath product is finite. We will call
such group H wreath-cyclic.
Note that the multiplication rule of automorphisms ¢, h which are presented in the form
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of wreath recursion [14]

g = (9(1)79(2), e 7g(d)>aga h = (h(1),h(2), .- wh(d))ahv

is given precisely by the formula:

g-h= (glhgg(l)a 92hog(2)7 e 7gdhag(d))0gah-

In the general case, if an active group is not cyclic, then the cycle decomposition of an
n-tuple for automorphism sections will induce the corresponding decomposition of the o, . If
o is v.p of automorphism ¢ at v;; and all the vertex permutations below v;; are trivial, then
we do not distinguish o from the section g,,, of g which is defined by it. That is to say, we
can write g,,, = 0 = (vi5)g as proposed by Bartholdi L., Grigorchuk R. and Suni Z. [1].

Minimal generating set of direct product of wreath product of cyclic groups

We now make use of both rooted and directed automorphisms as introduced by Bartholdi
L., Grigorchuk R. and Suni Z. [1]. Recall that we denote a truncated tree by T.

Definition 1. An automorphism of T is said to be rooted if all of its vertex permutations
corresponding to non-empty words are trivial.

Let [ = xyxox3--- be an infinite ray in T .

Definition 2. The automorphism g of T is said to be directed along the infinite ray 1 if
all vertex permutations along | and all vertex permutations corresponding to vertices whose
distance to the ray | is at least two are trivial. In such case, we say that | is the spine of g
(as exemplified in Figure 1).

It should be noted that because we consider only truncated trees and truncated
automorphisms here and for convenience, we will say rooted automorphism instead of truncated
rooted automorphism.

Theorem 1. If orders of cyclic groups C,,, C,, are mutually coprime i # j, then the group
G=0C, 10, ---1C;  admits two generators, namely By, Pi.

m

Proof. Construct the generators of ‘?ocij as a rooted automorphism Sy (Figure 2) and a
=
directed automorphism [; [1] along a path [ (Figure 1) on a rooted labeled truncated tree
Tx .
We consider the group G = C;, 1 Cj, 1 --- 0 (. Construct the generating set of
Ci, VCiy 1-- -G, , where the active group is on the left. Denote by lemy = lem(i, is, . .., i)
the least common multiplier of the orders by is,13,...,1%,, . In a similar fashion, we denote

lcmk = lcm(il, ig, . ,ik_l, ik+1, . ,im)

similarly.

We utilise a presentation of those wreath product elements from a tableaux of Kaloujnine
L. [8] which has the form o = [a1,as(x), a3 (x1,22),...]. Additionally, we use a subgroup of
tableau with length n which has the form o,y = [a1,as(1),...an(21,...,2,)]. The tableaux
which has first n trivial coordinates was denoted in [23]| by

Mg = ey o ye, a1z, xn), rr (T, .o Tpg1), -
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%]

21 ,N+2 2.2n 2,k(n-1)+1 2,kn
3,nm+1 3,nm+2 3,nm+2m 2,12,2."2,n 2,n+1m2,2n 2,kn
4,nml+ml+1 4, nml+ml+l
Fig. 1. Directed automorhism Fig. 2. Rooted automorhism

The canonical set of generators for the wreath product of C,1---1C,1C,, was used by Dmitruk
Y. and Sushchanskii V. [5] and additionally utilised by the author [17]. This set has form

o1=[m,e e....e],09=1e;, M e,....¢],....0n=le, e, ..., e,m]. (1)

We split such a table into sections with respect to (1), where the i-th section corresponds

to portrait of a at i-th level. The first section corresponds to an active group and the crown

of wreath product G, the second section is separated with a semicolon to a base of the wreath

product. The sections of the base of wreath product are divided into parts by semicolon and

these parts correspond to groups C, which form the base of wreath product. The [-th section

of of a tableau presentation of automorphism J; corresponds to portrait of automorphism f;
on level X'.

The portrait of automorphisms J3; on level X! is characterised by the sequence

(e,...,e,m,e,...,e), where coordinate m is the vertex number of unique non trivial v.p
on X', the sequence has iyi;...7_; coordinates. Therefore, our first generator has the form
Bo = [r1,¢€,¢e,...,¢e], which is the rooted automorphism. The second generator has the form
1112 1213413
—_— . . [ - \. HH .
b1 = |ema, e,e,...,6€,€ ...,6,M3,€, ...,6,€,...,6,M4,€, ..., €, ..., €|,
A A g o
v VvV Vv

i1 12 111213

It should be noted that after the last(fourth) semicolon (or in other words before 75 )
there are i9i314 + 7394 + 24 trivial coordinates. There are 943475 + 132405 + t4l5 + 5 trivial
coordinates before ms (or in other words after the fifth semicolon but before 74 ). In a section
after kK — 1 semicolon the coordinate of a non-trivial element 7 is calculated in a similar way.
We know from [23] that £ is generator of PG, i.e. 2-base of G. Recall that ®)G calls k-th
base of G . The subgroup ®G is a subgroup of all tableaux of form ®u with u € G .

Let C,, = (m,) and set o1 = fy. We have to show that our generating set {f, 1}
generates the whole canonical generating set. For this, we obtain the second new generator oy
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in form of the tableau

lemo _ plemo . _lema . . .
oy 2= [ = |e;my P e €, .., €€,6, ..., €€6,€, ..., € €6 ..., €

~ D S A —

i1 1112 111213

Because ord(m;) =i and (i1, lemq) = 1, we find that the element 7! is generator of
C;, since ord(m) = ord(7}™). We obtain that

lemy Ymodiz)

09 = (@cm) )

which corresponds to generator oy of canonical generating set (1). Observe that by = o; '3, is
generator of ®)G | i.e. it is precisely a 3-base of G .

It is known [23] that the generator oy precisely generates the group that is isomorphic to
the group [U], for all 2-nd coordinate tableaux. From the same principle, one can obtain that

e 1213
_ plems lems .
0-3_ 1 eafa 67 '7€a§767 ,?,71'3 767" ,6,6, 76767 7€a6 €
Vv Vv

11 12 111213

This generator o3 generates the group which is isomorphic to the group of all (2i; + 2)-th
coordinate tableaux, which is precisely [U],; ., [23]. Making use of the same principle allows
us to express all the o; from our canonical generating set.

Note that if it were a self-similar group, then it would be more useful to present
it in terms of wreath recursion, as the set where [, is the rooted automorphism. Given
a permutational representation of Cj we can present our group by wreath recursion. We
present (1 by wreath recursion as (1 = (mq,[2,¢e,¢€,...,¢). It would be written in form
glemz — pylemz — (glema glema o o o) = (1l e e .. €), since ord(m) = iy and
(i3, lemy) =1 then the element 75™2 is generator of Cj, too, because ord(my) = ord(my™?).

We then obtain the second generator o, of canonical generating set by exponentiation

lemy Y (mod io) . .
(5i6m2) 2 = (ma,€,...,€). Since we have obtained o9 = (mg,€,...,€), We can express
—1 _

oy = (7r2_17e, e ,e) , where m, is a state of o.
Consider an alternative recursive constructed generating set which consists of nested
automorphism [; states which are (5, (3,...,0,, and the automorphism ;. The state [

is expressed as follows o, '3 = (e, Ba,e,...,€).
It should be noted that a second generator of a recursive generating set could be
constructed in an other way, namely 3, = ;"2 = (m®, "%, ¢e,¢,...,¢) = (e,5",...,¢e,¢€),

where 3, is the state in a vertex of the second level X2 .
We can then express the next state 3, of B; by multiplying 0,8 = (e, B2,e,...,€).
Therefore, by a recursive approach, we obtain 3, = (73, 83, €, ..., e) and analogously we obtain

lems __ _lems __ lems s .
5 =05 = (my" e, ..., e). Similarly, we obtain

lemy, _ _lemy, lemy,
-1 — Op = (ﬂ-k ,€,...,€

lcmkfl(mod iK)
) = (mk,e,...,e). The k-th generator of the recursive generating

and o, = < 1

—1
set can therefore be expressed as o, fr_1 = (e, Bk, e, ..., ¢€).

80 Skuratovskii R., Williams A.
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The last generator of our generating set has another structure, namely o, = (7, €,...,¢€)
which concludes the proof. a
Let 1 Cj, be generated by fy and 8, and ? Cy, = (ag, 1) . Denote an order of g by

7=0 =0

gl

Theorem 2. If (|agl,|5o]) =1 and (laql],|51]) =1 or (Jaol,|61]) =1 and (|aal,|5o]) = 1,
then there exists generating set of 2 elements for the wreath-cyclic group

G =

J

I~ =

Ciy) X (1 C),
1=0

7=0

where 1 are orders of Cy; .

Proof. The generators «a; and [; are directed automorphisms, «q, 5y are rooted
automorphisms [1]. The structure of tableaux are described above in Theorem 1. In case
(lawl, |Bo]) = 1 are mutually coprime and (||, |51]) = 1 are mutually coprime, then we group
n m
generator ag and fp in vector that is first generator of direct product (1 Cy) x (0 Cy,).
=0 1=0
Therefore, the first generator of G has form (g, Sy) and the second generator has form of
vector (B1, a1 ). The generator «; has a similar structure.
In order to express the generator oy of the canonical set (1) from (ag, f;) we change the
exponent from 3, to lems. Analogously, we obtain o), = 5,'“™ which concludes the proof.
(|

Generators of commutator and center of wreath product
The following Lemma imposes the Corollary 4.9 of [12].

Lemma 1. An element of form (r1,...,rp_1,7p) € W' = (B1C,)" iff product of all r; (in any
order) belongs to B', where pe N, p > 2.

Proof.  Analogously to the Corollary 4.9 of the Meldrum’s book [12] we can deduce new
presentation of commutators in form of wreath recursion

w=(r1,re,...,Tp—1,7p),
where r; € B. If we multiply elements from a tuple (rq,...,7,-1,7,), where r; = higa(i)h;bl(i)g;bz,l(i) ,
h, g€ B and a,b € C,, then we get a product
p p
i=1 i=1

where z is a product of corespondent commutators. Therefore, we can write r, = 7“;_11 U S AN

m
We can rewrite element = € B’ as the product = = [[[f;,9;], m < cw(B).

j=1
Note that we impose more weak condition on the product of all r; to belongs to B’ then
in Definition 4.5. of form P(L) in [12], where the product of all 7; belongs to a subgroup L
of B such that L > B'.
In more detail deducing of our representation constructing can be reported in

following way. If we multiply elements having form of a tuple (ry,...,7,-1,7,), where
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ry = higazh !

ab(i) a_ba 1) o h,g € B and a,b € C,, then in case cw(B) = 0 we obtain a
product

p
H r; = H RiGa(iyh z)gaba_l() €. (3)
i—1

Note that if we rearrange elements in (2) as hlhflglgglhghglglgz’l...hphglgpgljl then by
the reason of such permutations we obtain a product of corespondent commutators. Therefore,
following equality holds true

Hh’ga’ ab )gaba I thgzh i ZEO Hhh 9i9i ZEEB/ (4)

=1 i=1

where xg,x are a products of corespondent commutators. Therefore,

(r1yeoyrpo1,mp) EW' it ry ..o -y =x € B (5)
Thus, one element from states of wreath recursion (ry,...,r,_1,7,) depends on rest of r;. This
p
dependence contribute that the product []r; for an arbitrary sequence {r;}/_, belongs to
j=1
B'. Thus, r, can be expressed as:
rp:rflm..-r};llx.

Denote a j-th tuple, which consists of a wreath recursion elements, by (r;,,7,,...,7;,) -
Closedness by multiplication of the set of form
(r1,...,mp1,1p) € W = (B1C,) follows from

k p

k
H(T’jl e ij_lrjp) = H HTji = RlRQRk € B/, (6)
j=11

j=1 =1 i=1

p
where 7;; is i-th element from the tuple number j, R; = [[rj, 1 < j < k. As it
=1

was shown above R; = H r;i € B'. Therefore, the product (6) of R;, j € {1,...,k} which
=1

is similar to the product mentloned in [12], has the property RjRs...Ry € B’ too, because of
B’ is subgroup. Thus, we get a product of form (2) and the similar reasoning as above are
applicable.

Let us prove the sufficiency condition. If the set K of elements satisfying the condition
of this theorem, that all products of all r;, where every ¢ occurs in this forms once, belong to
B', then using the elements of form

-1 -1 -1
(T1,€, €, ) 5 ey (€6, s, e,15 ) 5 ey (€€, €, 1,7 )

(€,€,.cse,T1re + oo - Tp_1)
we can express any element of form (rq,...,rp,_1,7,) € W = (B1C,) . We need to prove

that in such way we can express all element from W and only elements of W . The fact that
all elements can be generated by elements of K follows from randomness of choice every r;,
i < p and the fact that equality (2) holds so construction of r, is determined.

82 Skuratovskii R., Williams A.
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Lemma 2. For any group B and integer p > 2 if w € (B1C,) then w can be represented
as the following wreath recursion

k

w = (7,177,.27 cee 77np717741_1 cee T.p_—ll H[f]7g]])7

j=1
where r1,...,7p-1, fj,9; € B and k < cw(B).
Proof. According to Lemma 1. we have the following wreath recursion

W= (T1,72, ..., Tp1,Tp),

where r; € B and r,_17p_o...79r17, = © € B’. Therefore we can write r, = rl_l .. .r;_llx. We
k

also can rewrite element x € B’ as product of commutators = = [[[f;, g;] where k < cw(B).
j=1

Let us find upper bound of generators number for G'. Let A be a group and B a

permutation group, i.e. a group A acting upon a set X , where the active group A can act

not faithfully. Consider the set of all pairs {(a, f), f: X — h,a € A}. We define a product on

this set as

{(a1, fi)(az, f2) = (ara2, f1f51)},
where fi?(z) = fi(aa(z)).

Theorem 3. If W = (A, X) 1 (B,Y), where |X|=n, |Y|=m and active group A acts on
X transitively, then
d(G) < (n—1)d(B) +d(B")+ d(A).

Proof. The generators of W’ in form of tableaux [2]:

di = (aize,e,e,....e), ty=(ehj,ee ....ci) ..., b= _(e;e,e e ... hj,
where hj,c;, € S, B=(Sp), a; € Sa, A= (S4). Note that, on a each coordinate of tableau,
that presents a commutator of [a;h,..., h,] and [b G1y---sGn), a, b€ A h;,g; € B can be
product of form ajasa;'a;’ € A" and higa(i)h;bl(i aba ) € B, according to Corollary 4.9 [12].
This products should satisty the following condition:

H higa(i)h;bl(i)ggbzfl(i) €B. (7)

ieX
That is to say that the product of coordinates of wreath product base is an element of
commutator B'. As it was described above it is subdirect product of B x B x --- x B with

-~

n
the additional condition (8). This is the case because not all element of the subdirect product
are independent because the elements must be chosen in such a way that (8) holds. We may
rearrange the factors in the product in the following way:

H hzga( )hab aba_l('L H hzglh gz h] c B/.
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where [g,h] is a commutator in case cw(B) = 1. We express this element from B’ as
cw(B)
commutator [g,h] if cw(B) = 1. In the general case, we would have [] [g;, ;] instead of

j=1
this element. This commutator are formed as product of commutators of rearranged elements

of ]:[1 higa(i)h;bl(i) 9(;)2—1(1') . Therefore, we have a subdirect product of n the copies of the group

cw(B)

B which has been equipped by condition (8). The multiplier [] [g;,h;] from B, which has
j=1
at least d(B’) generators
n n cw(B)
th‘ga(i)h;bl(i)g;bz_l(i) = (H higih;lg;1> H [gj> hj] S B/'
i=1 i=1 j=1
n cw(B)
Since (] higih;'g;') = e and the product [] [g;,h;] belongs to B’ then condition
i=1 j=1

(8) holds. The assertion of a theorem on a recursive principle is easily generalized on multiple
wreath product of groups.

Thus minimal total amount consists of at least d (B') generators for n—1 factors of group
B, d(B') generators for the dependent factor from B’ and d(A) generators of the group A
which concludes the proof.

It should be noted that not all the elements of commutator subgroup, that has structure
of the subdirect product, are independent by (8), at least one of them must be chosen carefully
such that would be (8) satisfied. This implies the estimation d(G’) < (n —1)d(B) + d(B’).

Thus minimal total amount consists of at least d (B’) generators for n—1 factors of group
B, d(B') generators for the dependent factor from B’ and d(A) generators of the group A
which concludes the proof.

Let us find upper bound of generators number for G’. Let A be a group and B a
permutation group, i.e. a group A acting upon a set X , where the active group A can act
not faithfully. Consider the set of all pairs {(a, f), f: X — h,a € A} . We define a product on
this set as

{(a1, fi)(az, f2) := (a1a2, f1f51)},
where f1*(z) = fi(az(2)).

Theorem 4. If W = (A, X) 1 (B,Y), where | X| =n, |Y| =m and active group A acts on
X transitively, then
d(G) < (n—1)d(B)+d(B")+ d(A).

Proof.  The generators of W’ in form of tableaux [2|: a/; = (a;;e,¢e,¢e,...,€),
t1 = (e hj,e e ....c), ...ty =(ee,e,e,..., hj,e,....c;), ti=(eeee, ... .hj, cj),

where hj,c;, € S, B=(Sp), a; € Sa, A= (S4). Note that, on a each coordinate of tableau,
that presents a commutator of [a;hy,..., h,] and [b;¢1,...,9,], a, b € A hi,g; € B can be
product of form ajasa;‘a;’ € A’ and higa(i)h;bl(i)g&z,l(i) € B, according to Corollary 4.9 [12].
This products should satisfy the following condition:

H higa(i)h;bl(i)g(:bzfl(i) €B. (8)

1€X
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That is to say that the product of coordinates of wreath product base is an element of
commutator B'. As it was described above it is subdirect product of B x B x --- x B with

-

the additional condition (8). This is the case because not all element of the subdirect product
are independent because the elements must be chosen in such a way that (8) holds. We may
rearrange the factors in the product in the following way:

H hiGato)hap(iy aba—1 5y = (H higihi'gi ')lg. h] € B'.
=1 =1

where [g,h] is a commutator in case cw(B) = 1. We express this element from B’ as
cw(B)

commutator [g,h] if cw(B) = 1. In the general case, we would have [] [g;,h;] instead of
j=1

this element. This commutator are formed as product of commutators of rearranged elements

of ]:[1 higa(i)h;bl(i) 9&7}1—1(2') . Therefore, we have a subdirect product of n the copies of the group

cw(B)
B which has been equipped by condition (8). The multiplier [] [g;,h;] from B’, which has
j=1
at least d(B’) generators
n n cw(B)
Hhiga(i)h;bl(i)g;blafl(i) = (H higihi_lgi_l) H [gj7 hj] €B.
i=1 i=1 j=1
n cw(B)
Since (] higih;'g;"') = e and the product [] [g;,h;] belongs to B’ then condition
i=1 j=1

(8) holds. The assertion of a theorem on a recursive principle is easily generalized on multiple
wreath product of groups.

Thus minimal total amount consists of at least d (B') generators for n—1 factors of group
B, d(B') generators for the dependent factor from B’ and d(A) generators of the group A
which concludes the proof.

It should be noted that not all the elements of commutator subgroup, that has structure
of the subdirect product, are independent by (8), at least one of them must be chosen carefully
such that would be (8) satisfied. This implies the estimation d(G') < (n —1)d(B) +d(B’).

Thus minimal total amount consists of at least d (B’) generators for n—1 factors of group
B, d(B') generators for the dependent factor from B’ and d(A) generators of the group A
which concludes the proof. O

We shall consider special case when a passive group (B,Y) of W is a perfect group. Since
we obtain a direct product of n — 1 the copies of the group B then according to Corollary
3.2. of Wiegold J. [24] d(B") < d(B) +n — 1 [24]. More exact upper bound give us Theorem
A. [24], which use s a the size of the smallest simple image of G

Therefore, in this case our upper bound has the form

d(W') < clogsn + d(B') + d(A").

Now we consider no regular wreath product, where active group can be both as infinite as
finite and consider a center of such group. This is generalization of Theorem 4.2 from the book
[12] because action of A is not non faithfully. Let X = {xy,29,...,2,} be A-space. If an non
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faithfully action by conjugation determines a shift of copies of B from direct product B" then

we have not standard wreath product (A, X) !B that is semidirect product of A and [[ B
T, €X

that is Ax,(B)" and the following Proposition holds. Let K = ker(.A, X) that is subgroup of
A that acts on X as a pointwise stabiliser, that is kernel of action of A on X .

Denote by Z(A(B)) the subgroup of diagonal subgroup [4] Fun(X, Z(B)) of functions
f: X — Z(B) which are constant on each orbit of action of A on X for unrestricted wreath
product, and denote by Z(A(B™)) the subgroup of diagonal Fun(X, Z(B")) of functions with
the same property for restricted wreath product, where n is number of non-trivial coordinates
in base of wreath product.

Proposition 1 A center of the group (A, X) !B is direct product of normal closure
of center of diagonal of Z(B") ie. (E x Z(A(B"))), trivial an element, and intersection of

(K) x E with Z(A). In other words,
Z(A,X)B)=((1; hyh,...,h), e, ZIK, X)) E) ~ (Z(A)NK) x Z(A(B")),

n

where h € Z(B), |X|=n.

For restricted wreath product with n non-trivial coordinates: Z((A, X) 1 B) =
(1; ... hyhyoo by o)), ey ZIK, X)0E) ~ (Z(A)NK) x Z(A(BY)).

In case of unrestricted wreath product we have: Z((A, X)1B) = )
<(]_, R h_l, ho, hl, ceey hi, hi+1> cee ), e, Z(IC,X) { g> ~ (Z(A) N IC) X Z(A(B))
Proof. The elements of center subgroup have to satisfy the condition: f : X — B such
is constant on each orbit O; of action A on X ie. f(x) =b; for any = € O;. Also every
by: b, € Z(B). Indeed the elements of form (1; h,h,...,h) will not be changed by action of

—_——

conjugation of any element from A because any perrr?utation elements coordinate of diagonal
of B" does not change it. Also h commutes with any element of base of (A, X)!B because h
from center of B. Since the action is defined by shift on finite set X, |X| = n is not faithfully,
then its kernel I # E which confirms the proposition. Also elements of subgroup (A, X)E)
belongs to Z((A, X)B) iff it acts trivial on X . O

Example 1 If A =7 then a center Z((Z,X)1B) =
((1; hyh,...,h), e, nZxE : h € Z(A(B"))). Since the action defined by shift on finite set X
—_——

is not faighfully, and its kernel is isomorphic to nZ because cyclic shift on n coordinates is
invariant on X .

Generating set for commutator subgroup (Z, ¢ Z,,)", where Z,, Z,, have presentation in
additive form, is the following:

hy =(0;1,0,...,m —1),
he = (0;0,1,0,...,m — 1),

hp—1=1(0;0,...,1,m—1).

Thus, it consist of n tableaux of form h; = (hs, ..., hy,) and relations for coordinate of any
tableau h;, i€ {1,...,n—1} is

hil +---+ hmfl = O(mod m)
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According to Theorem 3, for wreath product of abelian groups presented in multiplicative form,
this relation has the form

n +2
thz,ra s VIR | (GO e | R LA DR
i=1 Jj=i+1

Example 2 If G =7, 1 Z,, is standard wreath product, then d(G') =n—1.

Let G = Z1x Z and G = Alx B be a restricted wreath product, where only n non-trivial
elements in coordinates of base of wreath product which are indexed by elements from X, in
degenerated case | X |[=n. Z acts on X by left shift. Also A acts transitively from left.

Remark 1 The quotient group of a restricted wreath products G = Z1x Z by a
commutator subgroup is isomorphic to Z x Z. In previous conditions if G = Alx B then,
G/G' = A/A x B/B'. It G =27, Z,,, where (m, n) =1, then d(G/G")=1.1f G=2Z1Z
is an unrestricted regular wreath product then G/G' ~Z x E ~ Z.

Proof. Consider the element of G = Aix B, where A can be Z which acts on X by left
shift, then elements of commutator subgroup has form:

les . oyhny ooy hoyhyy oo By, o], where hi € B. According to Corollary 4.9 [12] the
commutator of elements h = [a; hq,... h,], g = [b' g1,---,9nl, g,h € G satisfies the condition

8), which for case where B is abelian such: hzga h gt .. =e, where g;, h; are non
(@) ab(i)Iaba—1(3)

trivial coordinates from base of group, a, b € A gi, hj € B. The commutator with the shifted
coordinate h;gq) hab(l)gaba_l(l) appears within the 7 th coordinate position due to action of A.
According to Corollary 4.9 [12] the set of elements satisfying condition (8) forms a commutator.
Also the equivalent condition can be formulated:

n
H higihi tg; € B, (9)
i=1
n
Therefore, if B is abelian an element h of G belongs to G’ iff h satisfy a condition: [[ h; =e.
i=1
For unrestricted wreath product to show that all base of wreath product is in the
commutator subgroup we choose an element [e;... h_q, hg, hy,...], where h; is variable, and
form a commutator which is an arbitrary element [e;..., g 1, o, 01, ..] of wreath product base:
le;... h 1, ho by, [ose, e, .. elles... b1, hgt byt o e e, .. €] =
= le;...,9-1,90,91,--.]. For convenience we present Z in additive form. Then to previous

equality holds the following equations have to be satisfied: ho—hy = go, h1—ho = 0, ho—h3 =0, ....
it 1mphes that hl = ho — 1, h2 = hl, h3 = hg, hz—i-l = hz Therefore hz = O,Z 2 1.
From other side we have h_1 — hg = go,h-1 —h_o=0,h_o —h_3=0,.... so h_; = go, for all
i < 0. That is impossible in the restricted case but possible in the unrestricted. As a corollary
G/G" ~ Z x Z for restricted case. Thus, for unrestricted case all base of G is in G’ as a
corollary G/G' ~ Z x E..

Thus, this group is a subdirect product of B x B x --- x B with the additional condi-

n
tion (9) where, because for any element of the subgroup of coordinates there exists a surjecti-
ve homomorphism acting upon B, we can conclude that G’ must be a subdirect product.
The commutator subgroup is the kernel of homomorphism ¢ : G — G/G'. More precisely,
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G=(Z,X)1(2Y)>»G/G
~ 77"} Z]7Z' =7 XxZ.In case G = A1B the kerp has the same structure, the homomorphi-
sm @ maps those elements of B", as base of G, which satisfy [] h; = e, i.e. the elements
i=1

of B in e of the group G/G’. Thus, kerp = G'. To show that the properties of injectivity
and surjectivity hold for this homomorphism, we chose the elements from G which have the
form [e;e,...e h,e, ... e],where h ¢ G', corresponding to a specimen from the quotient group
B/B'’. Also we chose independently, an element of the form [a;e, ... e, ..., €] corresponding to
a specimen of the quotient group A/A’. Therefore, we must have a one-to-one correspondence
between G/G' and A/A’ x B/B'. In this case, we obtain /¢~ [4/ 4 x B/p].

In the scenario when the action of Z upon the n elements from the set is isomorphic
to the action of Z, elements on the set or the action of the Z, elements on itself. In case
G =217 wehave 9/ ~ [Z x Z]. O

For the group G = Z, 1 Z,, the same is true with ¢/ ~ [Z, x Z,,] and dependently
of fact of (m,n) =1 or not can admits one or two generators. For the group G = 7,1 Z,, it
should be noted that the same is true. In the general case, 1 Z,,, can have only one generator

=1

more than the quotient by commutator has.

Application to Geometric Groups of Diffeomorphisms Acting on the Mdébius Band

Maksymenko S. [11] studied various different geometric objects and considered the actions
of diffeomorphisms on them. We now consider the algebraic structure and the generators for a
group of such type.

Let M be a smooth compact connected surface, P be either the real line or the circle,
f: M — P be a smooth map, and O(f) be the orbit of f with respect to the right action of
the group Diff(M)(D(M)) of diffeomorphisms of M . We assume that at each critical point,
the map f is equivalent to a homogeneous polynomial in two variables without multiple factors.
Conversely, it should be noted that every group obtained in the way described will be isomorphic
to G(f) for some smooth map f: M — P.

We will now specify the object and the construction of orbits under the action of the
group diffeomorphisms. Let f: M — R be a Morse function on a connected compact surface
M. Let S(f) and Oy = O(f) be the stabiliser and the orbit of f with respect to the right
action of the group of diffcomorphisms D(M) respectively.

Let Xy denote the partition of M whose elements are the connected components of
level-sets f~'(c) of f. It should be noted here that an element g € X, is called critical if it
contains a critical point of f, otherwise, the elements is called regular. It is well known within
this research domain that the factor space M /Xy, has a natural structure of a finite graph and
is entitled the Kronrod-Reeb graph.

In our case, the diffeomorphisms act upon the Mébius band. Let M now be a compact
not orientable surface and w be a volume from M which has h-form of the Mdbius band. For
a smooth map f: M — R, denote by S(f), the subgroup D(M) of diffeomorphisms h (of
M ) which preserve f, i.e. those satisfying the relation foh = f.

This group is associated with S;4(f), which is a subgroup of stabiliser elements isotopic to
the identity, i.e. m(Oy, f) = m0Sia(f), where the last isomorphism arises due to locally trivial
bundle. Because there are a locally trivial bundle of homotopical groups with base m (Oy, f)
and layer myS;q (f), this means that an exact sequence of homotopic groups and locally trivial
bundle of homotopical groups give an explanation of the isomorphism 7 (Oy, f) >~ mSia (f) -
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This locally trivial bundle of homotopical groups induce an exact sequence of homotopic groups
of that bundle. Now since the group of diffeomorphisms is infinitely dimensional, we have found
the connected components. This group is associated with the action of the group 535{}) upon
splitting into the function level lines f.

In our case, the Morse function upon M has two local extremes, which are the points
of local maximum. Moreover, the Morse function f must have critical sets with exactly one
saddle point. The lines of levels around a local maximum point of f have the form of coaxial
circles, where these lines are determined by the polynomial with form =+(z% + 3?) + c.

Being a little more precise, we will now consider the function of Morse f on M , which

satisfies the following three properties:

1. f is constant on the bound M ;
2. there are two points of maximum at a saddle point;

3. at the two points of maximum, the values of the function are equal, i.e. at every critical
point of f, the germ of f is C° equivalent to some homogeneous polynomial in two
real variables without multiple factors.

Let f: M — R now be a C"° Morse function. We note here that since the polynomial
+(2%+y?)+c is homogeneous and has no multiple factors, it follows (from the celebrated Morse
Lemma) that the space of all Morse maps belongs to the space of maps F(M,P), where f
here only has isolated critical points and P is either the real line R or the circle S!.

Let D(M) be a group of diffeomorphisms which preserve the Morse function f on M .
We know from the results of Maksymenko S. [11] that mo(D(M)) ~ Z. Let there exist upon
M , n identical regions X; (critical sets) which have, for example, the form of doubles, meaning
that f has two critical points in each X; and additionally, that X, are the domains of simple
connectedness.

Consider a group H of automorphisms of M which are induced by the action of di-
ffeomorphisms h of a group D(M) which preserve the Mdobius function f. In other words,
the h here are from the stabiliser S (f) < D(M). We note that the generators with stabilisers
with the right action by diffeomorphisms moS(f|x, 0X;) are 7;. The generators of the cyclic
group Z which define a shift are p. Since the group action is continuous, this implies that the
p can realize only cyclic shifts, else one would change the domains of simplicity X; order.

Assume there are n critical sets X; on M. The automorphism group H =~ m(Oy, f)
has exactly two subgroups Z which correspond to the rotation of M , whose critical sets
X; have not changed the order of X; and (Z)" denotes the subgroup of automorphisms of
n critical sets. Analogously to previous investigations |11, 16, 18], there exists a short exact
sequence 0 — Z™ — m(Oy, f) — Z — 0, where the G-group of automorphisms are Reeb’s
(Kronrod-Reeb) graph [11] and hence Of(f) is an orbit under action of diffeomorphism group.

The application of such an action results in a surjective epimorphism to a group Z, which
has the left inverse and arises as a result of splitting. The automorphism group therefore has the
structure of a semi-direct product (Z)" x Z. This is in agreement with the work of Maksymenko
S. [11] who considers a similar scenario but for a different group and set (surface). Moreover,
we note that this Morse function f has critical sets X; on Mdbius band (M) with one saddle
point.

The minimal set of generators for the fundamental group m1(Oy, f) of the orbit of the
function f with respect to the action of the group of diffeomorphisms of non-moving M is
found in the next theorem.
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We note that since the action of the group of diffeomorphisms on n-critical sets of M
have been determined and described, the next thing to be considered is how this group has
the correspondent to this action structure m(Oy, f) ~ Zx(Z)". We will denote by H, the
fundamental group m1(Oy, f).

The first generator is p since it realises the shift of the M&bius band. The second, 7,
realises the rotation of domains X; of simple connectedness upon the Mébius band when passing
through its twisting point. In other words, 7 acts by the automorphism by permutation of sheets
of doubles X; with the winding of outer adjacency on each double X;. Thus, we conclude that
7; has infinite order.

Bounds on these domains are the lines of levels of function f upon these domains, or in
other words, the sets of points with f = const; . We shall now prove that the action of the first
generator p of the group defines the homomorphism in Aut(Z") ..

Theorem 5. The group H ~Zx(Z)" = (p, T) with defined above homomorphism in AutZ"
has two generators and non trivial relations

prTp =10 plrpT T = plrp it 0 < <.

Also this group admits another presentation in generators and relations
<p7 T1y- 5 Tn |PTi( mod n)lo_1 - 7—z'-i-l(mod n) s TiTj = T;Ti, ’i, .] < TL> . (10)

Proof. From the description above, we have that the action of the first generator of the
group, p, defines the homomorphism in the Aut(Z"). There exists such a diffeomorphism
from D(M), called the Dehn twist, which has an infinite order since it makes a winding of
outer adjacency (refer to Dehn twist in [6]) on the doubles X;, and it belongs to stabiliser
S(f). The generator 7 must therefore correspond to this diffeomorphism.

Let x; denote the number of domains from X;. The action of the first generator p, defines
the homomorphism p(z1,...,x,) = ?(z1,...,2,), where @(x1,...,2,) = (—Tp, T1,. .., Tp_1) .
It should be noted that this action could be equivalently represented as

ptn—1

(1, wa) = () (20 ymodn)s -

ptn—k L
(_1)[ " ]m(kfp)modna ey (_1)[n}x(nfp)modnxn)~

We extend the action of p onto an arbitrary « € Z. This action involves sequential shifts
of X, along the orbit on M defined as a. We have

[a«knfl

(- 2a) = (D 2 apmonn),

(=l

We will now consider two sets. The first set is o« = {1,2,...,n}. As an example, if

o =1, then we have [¢#2=1] = [H2=1] — 1. Additionally, we find the numbers m € N such
that [%’H} =1 and the numbers that are congruent to these m modulo 2n.

The second set is « = {0,—1,—2,...,—n + 1}. Similarly, we note that congruence

modulo 2n is of interest. As an example, if a = —1, then we have [2t2=1] — [=En=l] —

Hence, o € Z, o = lp is the number of shifts defined by «, while 7; corresponds to the action
of automorphism by permutation with winding of outer adjacency (Dehn twist in [6]) on the

T(k—a)ymodns - -+ (_1)[%]x(nfa)modnxn)~

90 Skuratovskii R., Williams A.



ISSN 1817-2237. Bicuuk JTouHY. Cep. A: Ilpupoauuui Hayku. - 2019.- Ne 1-2

doubles X;. We conclude that 7; therefore has an infinite order due to the Dehn twist. The
value of the sign of the z; indicates the presence of a rotation of the doubles or its absence.
The relations for the non-minimal generating set is precisely

<P, Tiy+--5Tn ‘pTi(modn)lOi1 = Ti4+1(modn) > .

This formulation yields that the relations for the minimal generating set is (p, 7) are

(P rp™ =1, || = |p| = 00, m = 7)),

where 71 = 7 and since p*"7;p7?" = 7,4, we transform our minimal generating set into a

canonical generating set of the n + 1 elements given by (p, 71,72, ..., Tn) -

It is known that the generators of the semidirect product G x H may be presented in the
form (g,h). We now utilise this form to say that the generators of Z" have the form of vectors
7 = (hi,e,e,B... e,), o= (e, ha,e,B...;¢e,),B..., 7, =(e,e,B... h,). Making us of the
operation of conjugation for (e, h;) = 7 = 7, allows us to express the second generator of Z".
Note that this is by (g,e) = p, where hy is one of generators of Z" and ¢ is generator of Z .

<97 6)71 (67 7—1) (gv 6) - (67 7-2) :
Analogously, we find
<g7 6)_1 (6, 7-2) (97 6) = (67 7-3) )

and, for a general term, we find

(9.:€)" (e, Tum1) (g€) = (e, 7).

We show that there are not otherwise independent relations within the group H . For this
group H , all canonical words have the form

i, (11)

This form follows from the form of semidirect product elements. We now prove using (10)
and reductions of reciprocals elements, that we may transform any finite non-trivial word of
F,41 to the form (11). Additionally, we shall prove that the set of all words which maps trivially
by a surjective homomorphism, with a kernel which is a normal closure of relations from the set
R from (10), are those coincides with trivial words in the group 7(Oy, f). For this purpose,
we prove the transformation equivalence 7;p = p7;41 . In fact,

Ti(modn)P = ppilTi(modn)p = PT(i+1)(modn)- (12)

It should be noted that the relation 7;7; = 7;7; holds since automorphisms of X; and X; are
independent of each other. Therefore, using this transformation, we can rearrange all the p to
be in the first position in the word over the alphabet {p,7,...,7,}.

We will show that normal closure of the relations pTiimodn) pl = Tit1(mod n) , With
7,7; = T;T; , determines the kernel of the surjective homomorphism ¢ from F,; to H. The
images of such a mapping are the canonical words (11) which have the form of H . The form of
these canonical words are determined by the semidirect product Zix(Z)" and its automorphi-
sms. This mapping ¢ has the form

Pm k__s1,.82 Sn
jm|—>p7'17'2 e T,

p1,.p2 ,.P3
l'jll'j2$j3 R
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n m

where x;, € oy, afialzal? o2t € Fyoand Y osi+k =)
i=1 1=1

For this purpose, we use the transformation equivalence 7;p = pr;;. Making use this

transformation allows us to therefore rearrange all p to the first position in the word over the

alphabet {p,7,...,7,}. Being a little more precise, this conversion is expressed as

Ti(modn)P = pp_lTi(modn)p = PT(i+1)(modn)-

The kernel of surjective homomorphism ¢ contains exactly those words that, after mappi-
ng, ¢ becomes the trivial words in the group H since those trivial words have the form
0 0

0.0
P TiTy o Ty

~ Note that an arbitrary word from ker(y)) may be transformed due to (12) into
P2 ... rin | where iy = 0 for all k. In fact, ker(y) is the normal closure of the relati-

ons (10) and hence it consist of the words p7(mod n)p*17f1 ) with [7;, 7i11] -

i+1(mod n

In particular, the word pTimod n)p ™" transforms by (12) to

Tilll(modn)
pp_lnﬂ(modn)rifl(mo dn)- The words from the normal closure must therefore have zero sum of
powers for each generator.

In the real group H , with the reduced canonical words (11), where all generators have
infinite order, only those words with zero exponents of generators are trivial. We have therefore

found all such relations. which concludes the proof. a

It should be noted that the main property of the homomorphism ¢, from F,,; onto H,
holds due to the same transformation (12). We now consider

p(ab) = p(a)p(b) = ¢ (x?llx?; . xffjj) o (ala® . i)
= phrsipse psepmplte | pin = phtmphipl i
Thus, the main property of the homomorphism holds. It should be noted that such a relation
p*rp~?" = 1 is typical for a wreath product.

The homomorphism from the group Z into the group AutZ"™, determining a shift of
generators (71,...,7,) of Z", can be equivalently presented by the matrix ¢. For the case
n =4, ¢ has the form
-1

ASE

I
oo~ o
o oo
— o oo
oo o

The generators of the subgroup Z" can be presented in the form of vectors. These vectors are
precisely

(hi,e,e.e), (e, ha e e), ..., (e e e hy).

In order to check the relation for the case n =4, we consider

-1 0 0 0
, o =1 0 o
=10 0 -1 0

0 0 0 -1

Thus, ¢® = E and our relation p?"7p~2" = 71 holds.
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It should be noted that the research of Maksymenko S. [11] tells us that a group of this
kind arises as a fundamental group of the orbit m;(Oy, f) for some Morse function f which,
as described above, acts upon the Mdbius band M .

Note that we have derived the relation p**7p=2" = 7. If we now multiply this from left

on 7!, we can equivalently express this as

T—1p2n7_p—2n —e.
In a similar fashion, the multiplication from the right on p?" obtains
T71p2n7_ — an.

One such relation characterises the Bauslag-Soliter group. This is the group G(m;k),
which has the form G(m;n) = <a, b;a bma = bk’> , where m, k € Z . Note the Bauslag-Soliter
group has only one relation.

Corollary 1. A center of the group H = Zx ,(Z)" is a normal closure of sets: diagonal of Z™,
trivial an element and kernel of action by conjugation that is generated by p*™ ({(p*™) ~ 2nZ ).
In other words,
Z(H)={((1; h,h,...,h), e, 2nZ x E),
—_———

where h, g € Z.. Thus, Z(H) ~ 2nZxZ. Since the action is defined by conjugation and relation

p*7ip~ 2 = 7, holds then the element p®™ commutates with every 7;. So subgroup stabilise all

x; of Z-space M . Other words subgroup (p*) belongs to kernel of action ¢. Besides the

element (1; h,h,... h) will not be changed by action of conjugation of any element from H
——

n
because any permutation elements coordinate of diagonal of 7" does not change it.

We can generalise a result of Meldrum J. [12] because we consider not only the permutation
wreath product groups, but the group A does not have to act upon the set X faithfully, hence
(A, X) 1 B. Recall that an action is said to be faithful if for every g € G, there exists = from
G -space X such that z9 # x. We consider wreath products with no regular actions of the
active group 7Z.

Let X ={zy,29,...,2,} be the Z-space. If an action by conjugation determines a shift
of the copies of Z from the direct product Z" then, we have not found a standard wreath
product (Z,X)1Z which is a semidirect product of Z and [] Z, i.e. Zx4(Z)". Thus, we

r,€X
observe the following corollary holds.

Corollary 2. The center of the group Zx4(Z)" ~ (Z, X)VZ consists of normal closure of the
diagonal of 7™, a trivial element and the kernel of action by conjugation, i.e. nZ. In other
words,
Z(H)=(1; hyh,...,h), e, (nZ,X)1E) ~nZ x Z,
——

where h, g€ 7, Z(H) ~nZ X 7.

Proof. The proof follows immediately from Corollary 1 by utilising the kernel of action of
¢ . The stabiliser of such an action over the Z-space X = {z1,25,...,2,} is the subgroup nZ.
Additionally, the kernel of this action has elements from the diagonal of Z".
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It should be noted, if we have G =7Z ! Z ! Z, where |X,,| = m and |X,| = n, then
Xm X

the action is defined by the shift upon finite set X, . In this case, we find that |X|=n is not
faithful and its kernel is also isomorphic to nZ since the cyclic shift on the n coordinates is
invariant on X . Note that the action is defined by the shift on the finite set X,,, is not faithful
and its kernel is isomorphic to mZ . Additionally, within this kernel of action is the elements
from the diagonal of Z™" which are isomorphic to Z. Thus, its center is Z(G) ~ nZ x mZ X Z
which concludes the proof. a

Remark 2 The center of a group of the form Zx,(B)" ~ (Z, X)1B generates, by normal

closure of: center of diagonal of B™, trivial an element, and nZ €.
X

Conclusions

The minimal generating set and the structure of the group mSi(f) of the orbit one
Morse function have been investigated. The minimal generating set for wreath-cyclic groups
have been constructed.
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MIHIMAJIbBHA CUCTEMA TBIPHUX I CTPYKTYPA BIHIIEBOI'O
JOBYTKY I'PVII, ®YHIAMEHTAJIbBHA I'PVYIIA OPBIT ®YHKIIII
MOPCA

Ckyparoscbkuii P. !, Bimpamc A. 2

L sukaadan waedpu obuucarosarvroi mamemamuru,
HTYY, KIII, Kuis
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2 naykoeuti cnispobimmuus incmumy mamemamuru Kapdigevrozo ynusepcumemy,

Kapdigperuii ynisepcumem, Yeavc

PE3IOME
®akTop rpymna mo KOMyTaHTY I 00MeyKeHOTro 1 HeoOMeKeHOT0 BIHIEBOTO JOOYTKY 3HAMIEeHO.
JocmizKeHo MHOXKUHI TBIpHUX J/Isi BIHIIEBOTO TO0OYTKY.

CrpykTypa BiHIEBOTO J00YTKY 3 HETOYHOIO /€10 aKTUBHOI rpynu 3uaiigena. Jlocitimkeno
MIHIM&JIbHY CHUCTEMY TBIPHHUX BIiHIIEBOTO JOOYKTY i flOro KOMyTaHTy, BJIACTUBOCTI KOMYTAHTA.

B cBoiit pobori Mu migcuaoemo ¢Boi monepenni pesyabratu [18, 21, 20] i 6ymxyemo miHi-
MaJIbHY CUCTEMY TBIpHUX JJIsi KOMYTAHTY BIHIIEBOTO JIOOYTKY 9K CKIHUEHHUX TaK 1 HECKIHYeHHHUX
IPYII, TAKOXK I TPSIMOTO TOOYTKY 1ux rpyn. Mu ysaraiabHioeMo pe3ysibr Meaapyma [12] mpo
KOMYTAHT BIiHIIEBOIO JOOYTKY, OCKLIbKH PO3LVISIAEMO He TiITbKH PeryjspHi BiHIEBi H00YTKH,
MH PO3IJISIIAEMO HE PEeryJisipHi BiHIesi 1o0yTKu, jie aktuBHa rpyna A jie ve rouno. Komyrant
TaKUX TPYI, CUCTEMa TBIPHUX 1 HEHTP OyJIO JOC/IiIZKEHO HAMHU.

Mu posrigmaeMo HOBHUI K/1ac BIHIEBOTUKIIYHIX TeOMETPUIHUX I'PYyI. MiHiMa/IbHY crcTe-
My TBIpHHX JJI IAX TPYI 1 iX KOMyTaHT OyJ0 3HAHIEHO.

Koaro4oBi caoBa:  sinyesuti dobymox epyn, KoMYymanma 6iHue6020 Ao0Yymxy, MIHIMAAL-
HA CUCTMEMA MEIPHUT, UEHMP HE PE2YAAPHO20 8iH1Le6020 do6YMEKY 2pyn, PyHdamMenmarvra 2py-
na opoim pynryii Mopca, 2pyna duddeomopdiamis, wo die na cmpivyi Mvobiyca.

Ckyparoscknii P.!, Buabsamc A. 2

L npenodasament wadedpor evnucsumenvroti mamemamur,
HTYY, KIII, Kuis

2 payunout compyonuk unemumya mamemamury Kapougekozo ynusepcumamna,

Kapougpcruti ynusepcumem, Yoanc

MUWUHVMAJIbBHAYA CUCTEMA OBPA3VYIOIIINX I CTPYKTVYPA
CIIJIETEHU A I'PVIIII, PYHIAMEHTAJIbBHA4 I'PVIIIIA OPBUT
OYHKIINN MOPCA

PE3IOME
DakTOop rpymILy MO KOMMYTAHTY IS OTDAHUIEHHOTO U HE OIPAHUYEHHOTO CILJIETeHUsI HAlIeHO.
WccaenoBanbl MHOZKECTBa 00pa3yIONMIUX JIJIs CILIETEHU.

CTpyKTypa CILIeTeHUusd ¢ HeTOYHBIM JIeiCTBHEM aKTUBHOM Ipynnbl Haiiaena. VccireioBano
MHUHHMAJIBHYIO CHCTEMY 0OPA3YIONIUX CILIETEHHA U er0 KOMMYTaHTa, CBOHCTBA KOMMYTAHTA.

B 3r0il paboTe MBI YCWINIH Tpeablaylme ¢Bou pesyibrarel [18, 21, 20] u mocrponin
MUHAMAJIBHYIO CHCTEMY O0OpPa3yIInX /I KOMMYTAHAT CILIETEHNS KAK KOHEYHBIX TaK U OECKO-
HEYHBIX IPYII, TaKKe JJisi TPAMOTO MPOUW3BeieHnus 3TuX Tpymir. Mbr 0600 pe3yibraThi
Mesapyma [12] 0 KOMMyTaHTe CILIETEHHUs, TIOCKOJIBKY PACCMATPHBAEM He TOJBKO PEery/ispHbIe
CIUIETEHUsI a W He peryjspuble, rje akTupHad rpynmna A geiictByer He Touno. Kommyrant
TaKUX TPYII B €ro cucTeMa oOpa3yIold, HeHTP ObLINH UCCAeI0BAHBI HAMU.

PaccvoTrpen HOBBIN KJ1acC BEHEIHOIMINIECKUX TeOMeTprudecKux rpymi. MuHuMaabayo
cucTeMy 0Opa3yIONUX [T ITUX TPYHI U UX KOMMYTAHT OBLIO Hali1eHO.

KmaroueBbie cioBa:  cnaemenue 2pynn, KOMMYMAHM CNACMERUSL, MUHUMAAOHAL CU-
CMema 00pa3yUT, UEHMP HE PE2YAAPHOZ0 CRAECENUL 2PYN, PYHIAMEHMANOHAL 2PYNNG Op-
oum dynryuu Mopca, epynna dudpeomoppusmos, ee deticmeue 1a senme Mebuyca.
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