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ON PARASTROPHICALLY PRIMARY NON-EQUIVALENCE OF
GENERALIZED TERNARY QUASIGROUP FUNCTIONAL EQUATIONS OF
THE TYPE (5;3;0;0)

Two functional equations are called parastrophically primarily equivalent if one can be
obtained from the other in a finite number of the following steps: 1) replacing the equation sides;
2) renaming the functional variables; 3) renaming the individual variables; 4) applying the pri-
mary identities (|11]). This article is a continuation of the investigation of quasigroup functional
equations on ternary quasigroups using the classification method up to parastrophically primary
equivalency. In [8] it is proved that there are no more than 36 such equations of the length three,
i.e. having three functional variables. In [15] it is established that among them there are exactly
4 functional equations of the type (2,2,2,2) (each individual variable has two appearances). In
this article, it is shown that the equations of the type (5;3;0;0) are not parastrophically primari-
ly equivalent to the other ternary equations with three functional variables. All linear solutions
of these equations are found. It is proved that the equation Fi(Fy(y,y,y),z,z) = F3(z,z,x) is
not equivalent to the other functional equations of the length three.

Key words: ternary quasigroups, functional equation, individual type, parastrophically
primary equivalence.

Introduction

If two functional equations are parastrophically primarily equivalent, then there exists
a simple dependence between their sets of all solutions. That is why it is efficient to classify
functional equations up to parastrophically primary equivalency. There are a lot of articles
devoted to the classification of binary functional equations, for example [3, 4, 5, 6, 7, 9, 11, 17,
19].

This article is devoted to classification of ternary functional equations up to parastrophi-
cally primary equivalency and it is a continuation of the works [8], [13], [15]. Generalized ternary
functional equations of the length one and two are classified in [13]. In [8] it is proved that all
functional equations of the length three are parastrophically primarily equivalent to the given
list of 36 functional equations. Full classification of generalized quadratic quasigroup functi-
onal equations of the length three is given in [15] and their solution sets are found. Because
unlike other equations, they have four different individual variables, such equations are not
parastrophically primarily equivalent to other functional equations of the length three.

Other ternary generalized functional equations of the length three, namely equations
having two different individual variables are under consideration in the current article. It is
proved that the equations are not parastrophically primarily equivalent to the other functional
equations of the length three. Their linear solution sets are found. In addition, it is established
that the equation Fi(Fs(y,y,y),x,x) = F3(z,x,z) is not equivalent to the other functional
equations of the length three from the given list of 36 functional equations.
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1. Preliminaries

A mapping f: Q% — Q is called a ternary invertible function, if there exist functions
()¢ Of BUFf such that for any x,7,2 € Q the following identities:

F(f(z,y,2),y,2) =, WE(f(z,y,2),y,2) =,
fla, ®Vf (x,y,2),2) =y, (24f(95 flz,y,2),2) =y, (1)
hold. If an operation f is invertible, then the algebra (Q; f, *f, @Yf BYf) is called a ternary

quasigroup [12].
A o -parastrophe of an invertible operation f is called an operation °f defined by

Uf(xlaa x?aax&r) = T4 = f(ﬂfl, T2, IE3) = T4, (S S4a

where Sy denotes the group of all bijections of the set {1,2,3,4}.
Renaming the individual variables, one can conclude that the relationships are equivalent
to

flay,29,m3) =24 & f(Xip-1,Tog—1,T35-1) = Tyy—1, 0 € Sy. (2)
If 40 = 4, the parastrophe is called principal and can be found by
°f(x1, 29, 23) = f(T15-1, Tog-1,T35-1), O € S3. (3)

Since for every invertible operation f and for every permutation o € S; the relations

TH=7f and *f=f (4)

hold, then the symmetric group S; defines an action on the set Az of all ternary invertible
operations defined on the same carrier. In particular, the fact implies that the number of
different parastrophes of an invertible operation is a factor of 24. More precisely, it is equal
to 24/|Ps(f)|, where Ps(f) denotes a stabilizer group of f under this action which is called
parastrophic symmetry group of the operation f.

An operation f is called:

e totally symmetric, if all its parastrophes coincide, i.e. Ps(f) = S,11;
e commutative, if all its principal parastrophes coincide, i.e. Ps(f) 2 S, .

A ternary quasigroup (Q;f) is called a Steiner quasigroup [10, 16], if it is totally
symmetric and satisfies the identity

fz,2,y) =v. (5)
Taking into account |14, Proposition 1|, the variety of Steiner quasigroups is defined by (5) and
f(x7y7 Z) = f(y7 x? Z)’ f(z7 x? f(l" y7 Z)) = y' (6)

The identities (1) are true not only for all values of individual variables in a carrier @,
but for all values of f in the set Ajz of all ternary invertible functions defined on ). That is
why (1) can be considered as hyperidentities over Aj.
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We research ternary functional equations which are universally quantified equalities
Ty, = T5 where T and T, are terms consisting of individual and ternary functional variables. In
addition, these equations are considered on an arbitrary set () called a carrier and therefore they
have neither individual nor functional constants [1, 12]. We analyze only generalized ternary
quasigroup functional equations of the length three of the type (5;3;0;0), where the collocation
‘ternary quasigroup equation’ means that all functional variables take their values only in the
set As; the word ‘generalized’ means that the variables are pairwise different |2, 9, 18]; the
collocation ‘length of a functional equation’ is the number of functional variables including their
repetitions [3, 13|; the notion ‘individual type’ of a functional equation of n individual vari-
ables is the sequence (aq,as, ..., a,), where a; is the number of appearances in the equation of
the 7-th individual variable placed in lexicographic order and n is the number of all possible
different independent individual variables [3|. Note that each individual variable appears at
least twice in a quasigroup functional equation, otherwise the equation has a solution only on
a one-element carrier.

A sequence of values of functional variables of an equation 77 = T5 is called its solution,
if the equation becomes a true proposition after replacing the functional variables with these
values. If all values coincide with a ternary operation f defined on (), then the operation f
or the groupoid (Q; f) is called a solution of Ty =Ts.

Two functional equations are called parastrophically primarily equivalent if one can be
obtained from the other by renaming functional or individual variables or applying the hyperi-
dentities (1).

Lemma 1. [15] Let v = w and v = W' be generalized ternary functional equations of the
length three. If they are parastrophically primarily equivalent, then there exists a bijection T in
Ss and bijections o1, 09, 03 in Sy such that for an arbitrary solution (fi, fa, f3) of v =w
the sequence

(glfh'? U2f27'7 Usf?)’r)

is a solution of the equation v' = W' .

Corollary 1. [15] If for every bijection T in Ss and bijections oy, o9, 03 in Sy there exists
a solution (f1, fo, f3) of v =w such that (“'f,.,"%fo,,7f3,) is not a solution of v' = w', then
the functional equations v =w and V' = W' are not parastrophically primarily equivalent.

Corollary 2. [15] If a totally symmetric function is a solution of a functional equation but
it 1s not a solution of another functional equation, then the equations are not parastrophically
primarily equivalent.

Lemma 2. [6] If functional equations have a different number of different independent indi-
vidual variables, then these functional equations are not parastrophically primarily equivalent.

Theorem 1. [8] Fach ternary quasigroup functional equation of the length three having two
different propositional variables 1s parastrophically primarily equivalent to at least one of the
following equations.

The equations of the type (6,2,0,0) are:

Fi(B(z,z,2),y,y) = F3(z,2, @), (7)
Fi(Fy(z,z,2),2,2) = F3(2,y,9), (8)
Fi(Fy(z,x,x),z,y) = F3(x,z,y), (9)
R (Fy(z,2,y), @,2) = Fs(z,,y). (10)
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The equations of the type (5,3,0,0) are:

2. Linear solutions of equations of the type (5;3;0;0)

NN N S
—_
— e N e N

N N O

To analyze the parastrophically primary equivalency of these equations, we must have
some sets of their solutions. For this purpose, we find sets of their solutions whose components

are linear over the same arbitrary commutative group.

Let (Q;+,0) be an arbitrary commutative group of three operations defined by the

equality:

where «;, (;, 7; are automorphisms of (Q;+,0), a; € Q,

filz,y, 2) = cux + Biy + viz + a;,

i=1,23.

(20)

Theorem 2. A triplet of operations (f1, f2, f3) defined by equalities (20) is a solution of the

equation

1. (11) if and only if

az = a1 + a1as,

2. (12) if and only if

az = a6z + ay,

3. (13) if and only if

az = a6z + ay,

4. (14) if and only if

az = qiag + ag,

5. (15) if and only if

az = a3 + aq,

100

Vo = —g — P,

Bs = Y1 — V3,

3 = B1 + 71,

V3 = 12 + 172,

Y3 = a1Y2 + V1,

V3 =B+ — g — Fs; (21)

az = ai(ag + B2 + 72) + Bi; (22)

B3 = ar(as + B2 + 72) — 73; (23)

B3 = cras + i + 1 — as; (24)

63 = oy + 06152 + ﬁ1 — Q3. (25)
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Proof. A triplet (fi, fo, f3) of ternary invertible operations is a solution of the equation (11)
if and only if for all x and y

h(h,y,y) 2,2) = fs(z,z,2).
Taking into account the equalities (20), this identity is equivalent to
a1(aoy + Boy + 12y + a2) + i + nx + ar = azr + B3 + 37 + as.
Since «; is an automorphism, we get an equivalent identity

(b1 + 7))z + ar(ae + Bo + Y2)y + aras + ay = (a3 + 3+ 73)T + as.

Substituting = y = 0, *+ = 0 and y = 0 in turn, we obtain ayas + a; = ag,
aj(ag+ Pa+7) =0, B+ = as+ B3 +73. It is obvious that these equalities are equivalent
to (21).

A triplet (fi1, fa2, f3) is a solution of the equation (12) if and only if
hfalz 2, 2),2,y) = f3(z, 4, y)
holds. Considering (20), we have
a1(x + fox + Yox + az) + frx + N1y + a1 = azx + B3y + Y3y + as.

This identity is equivalent to ajas + a; = as, aj(as + P2+ 72) = as, 71 = [3 + 73 that are
equivalent to (22).

(f1, f2, f3) is a solution of (13) if and only if fi(fo(z,x,2),y,y) = f3(z,z,y) holds. It
means that

ag (o + Pox + x4 ag) + b1y + 11y + a1 = azx + B3x + Y3y + as.
This equality is equivalent to ajas + a1 = ag, 51+ = V3, ar(as + By + 1) = az + Ps.

Therefrom we have (23).
A triplet (fi, fa2, f3) is a solution of (14) if and only if for all z, y,

Silfa(z,y,y) 2, 2) = fs(x,2,y)
holds. In particular, if we take into account (20), we get
a1 (e + oy + Y2y + a2) + iz + M + a1 = azx + B3 + 3y + as.
This identity is equivalent to the equalities ajas + a1 = a3z, ajas + 51 + 71 = a3 + [3,

a1(Bs + 72) = 3. The obtained equalities are identical to (24).
A triplet (f1, fa2, f3) is a solution of (15) if and only if for all z, vy,

fl(fg(l’,il?,y),l’,y) = fg(l',.l’,y)

holds. Taking into account (20), this identity is
a1(aex + Bo + Yoy + az) + b1 + Ny + a1 = ax + Bz + Y3y + as.

ajas + ay = az, cqag + aifs + 01 = asz+ P, agye + 71 = 73 are equivalent to (23). O
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Linear idempotent solutions. Note that a function defined by
fl(x7yaz) = ax+5y+72+a

over a commutative group (Q;+;0) is idempotent, i.e., f(z,x,z) = z if and only if a+p+vy =1
and a = 0. Therefore, the canonical decompositions of operations of a triplet (f1, f2, f3) defined
by (20) are the following:

filz,y,2) = qix + By + (L — i — Bi)2, (26)
where «;, §;, t—a;—(; are automorphisms of the commutative group (Q;+,0), i=1,2,3.

Corollary 3. A triplet of invertible idempotent functions (f1, f2, f3) defined by (26) over a
commutative group (Q;+;0) is a solution

e of (11) if and only if |Q| =1;

e of (12) if and only if oz = ay + fy ;

e of (13) if and only if Bs = a1 — as;

e of (14) if and only if Bs = ajas +1— oy — ag;

e of (15) if and only if Bs = ayan + B2 + 1 — as.

Proof. Let (fi, f2, f3) be a triplet of ternary invertible operations defined on a commutative
group (Q;+;0) by (26), where «a;, B;, ¢t — «; — B; are automorphisms of the group.

If (f1, f2, f3) is a solution of (11), then by the item 1 of Theorem 2. v = —as — [, but
Yo =1— g — B =1+ 5. Therefore, 1 =0, i.e. x =a forall z € Q) and for some a € Q). It
means that () is a singleton.

Let (f1, f2, f3) be a solution of the functional equation (12). Accordingly, from (22):

ag=ai(ae+ P+ (L —as— B2)) + b1 = oq + bu,
(b= =PB1)—(t—az—P3)=—ar— Bt az+ 3 =
=—og— 1 +aq+ P+ B3 = Ps.

Thus, the equality (22) is equivalent to asz = a3 + [ .
Let (fi, fa, f3) be a solution of (13). From the equalities (23)

Bs=ai(ay+ B +1—ay— fa) —az = a1 — as.
That is why, the second equality from (23) follows from the obtained equality:

V3 ZL—Oé3—53ZL—OZ3—(CY1—Oé3)=
ZL—Oé1251+(L—a1—51):51+%-

Therefore, item 3) of this theorem is equivalent to item 3) of theorem 2..
Let (fi1, fo, f3) be a solution of the functional equation (14). It is equivalent to the equali-
ties (24). Consequently,

53:041042+51+(L_041—51)—043:041042+L—041—043-
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The second equality from (24) is equivalent to the obtained one. Indeed,

V3 =t—az3—fz3=t—az—aas— L+ a;+az3 =01 —ajas =a(t —ay) =
=a(fe+1t—ay— [a) =ar1fa+ ai1(t —ay — f2) = a1 By + arye.

Finally, let (f1, f2, f3) be a solution of (15). Therefore, item 5 of theorem 2. holds. Then
the third equality follows from the second one:

Y3 =t—az3—f3=t—az— oy — B — B +az=
=t—ae—af—fri=0—ar—F)+tauta(t—ay—Ps+1) =
=mtotoyre —a =7+ ar7.

O

3. About parastrophically primary equivalency of functional equations of the
length three

Every generalized ternary functional equation of the length three is parastrophically pri-
marily equivalent to at least one of the functional equations listed in [8]. The equations having
different number of different individual variables are not parastrophically primarily equivalent
(Lemma 2.). That is why, each functional equation of the length three with two different indivi-

dual variables is parastrophically primarily equalent to at least one of the functional equations
(7)-(19) (Theorem 1.).

Proposition 1. Fach functional equation of the length three of the type (5;3;0;0) is parastrophi-
cally primarily equivalent to none of the rest of the functional equations of the length three.

Proof. It is easy to verify that an arbitrary Steiner quasigroup is a solution of each of the
functional equations (7)—(10) and (16)—(19). But this quasigroup is a solution of none of the
equations (11)—(15). According to Corollary 2., the statement of the proposition is true. O

Theorem 3. The functional equation (11) is parastrophically primarily equivalent to none of
the rest of functional equations of the length three.

Proof. Taking into account Proposition 1., it is enough to prove that the equation (11) is not
parastrophically primarily equivalent to the rest of functional equations of the type (5;3;0;0).

Suppose the functional equation (11) is parastrophically primarily equivalent to the functi-
onal equation (k), where k=12, 13, 14, 15. Let the solution of the equation (k) consist
of three idempotent invertible functions (fi, fo, f3) defined on a set |@Q| > 1. If the equati-
ons (k) and (11) are parastrophically primarily equivalent, then by Lemma 1. there exists a
permutation 7 in S3 and permutations oy, o9, o3 in Sy such that the triplet

(glflTv J2f27'7 03f3’r)

is the solution of the equation (11). But a triplet of idempotent invertible operations is a solution
of the equation (11) only if |@Q] = 1. A contradiction. Therefore, the functional equation (11)
is not parastrophically primarily equivalent to the functional equation (k).

Hence, to complete the proof of the theorem, it is sufficient to find examples of triplets
of idempotent quasigroups which are solutions of functional equations (12)-(15) on some sets
having more than one element. For this purpose, we use Corollary 3..
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Example 1. Let a triplet of idempotent invertible operations be defined on the field Z5 by
folz,y, 2) = 22 + 2y + 2z,
f3<x7 Y, Z) =2z + 3y =+ Z,
fl(l',y,z) = $+y+42

Each of the operations is idempotent and invertible. Moreover, the triplet (fi, fo, f3) is a
solution of the functional equation (12):

20+ 2x + 2x +x + 4y = 2z + 3y + v,
bx = 0.

Hence, the functional equations (11) and (12) are parastrophically primarily nonequivalent.

Example 2. Let a triplet of idempotent invertible operations be defined on the field Z5 by
folz,y, 2) = 22 4 2y + 2z,
filz,y,2) =22+ 3y + z,
fa(z,y,2) =z +y+4z.
The triplet (fi, fo, f3) is a solution of the functional equation (13):
22z +2x+22)+3y+y=x+x+4y,
10x = 0.

Hence, the functional equations (11) and (13) are parastrophically primarily nonequivalent.

Example 3. Let a triplet of idempotent invertible operations be defined on the field Z5 by
filz,y,2) =z + 3y + 3z,
fo(z,y,2) = x + 2y + 2z,
fa(z,y,2) =+ y+4z.
The triplet (fi, fo, f3) is a solution of the functional equation (13):
T+ 2y 42y +3r+ 3x = x + x + 4y,
5 = 0.

Consequently, the functional equations (11) and (14) are parastrophically primarily nonequi-
valent.

Example 4. A triplet (fi, f, fo) of idempotent invertible operations defined on Z; the ring
modulo 5 by

filz,y,2) =+ 4y + 2z,
fo(z,y,2) = x + 2y + 2z,
fa(z,y,2) = +y+4z,
is a solution of the functional equation (15):
(x+2x+2y) +4x+2y =z 4+ + 4y, ie. iebr=0.

Thence, the equations (11) and (15) are not parastrophically primarily equivalent.
Thus, the theorem has been proved. g
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Conclusion

The study of classification of ternary quasigroup functional equations up to parastrophi-
cally primary equivalence is continued in this article. It is proved that the functional equations
having three functional variables (i.e. of the length three) and two individual variables are not
parastrophically primarily equivalent to the other functional equations of the length three. Besi-
des, all linear solutions of these equations are found. It is also established that the functional
equation (11) is not parastrophically primarily equivalent to the equations (12)—(15).
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acniparmra 3 Kypcy Parysvmemsy npo2pamyeaHts ma KOMnN 10OMePHUT |
MENEKOMYHIKAUITHUT cucmem, XMesbHUULKUT HOUIOHAAbHUT YHIBEPCUMEM,

ITPO ITAPACTPO®HO-ITEPBVHHY HEPIBHOCUJIBHICTD
V3ATAJIbHEHUX TEPHAPHUX KBA3IIPYIIOBUX ®YHKIIIMHIX
PIBHAHBb TUIIY (5;3;0;0)

PE3IOME
JIBa (pyHKIIHHUX PIBHAHHS HA3HUBAIOTHCA MAPACTPOMHO-TEPBUHHO-PIBHOCUILHUMHU, SKIO OJHE
PIBHSHHS MOXKe OyTH OTpUMaHe 3 IHIIOI0 3a CKiHYeHHY KiIbKICTb 3aCTOCYBaHb HACTYITHUX KPO-
KiB: 1) 3aMiHU CTODIH piBHSHHS; 2) mepeiiMenyBanHs (DYHKIIHHIX 3MIHHUX; 3) mepeiiMenyBaHHs
IpeJIMEeTHIX 3MIHHUX; 4) 3acTocyBaHHsI nepBuHHUX ToTOKHOCTEH ([11]). Ilst crarTsa € mpoaoB-
JKEHHAM JIOCJIJKeHHS KBa3irpynoBux (PyHKIIHHUX PIBHAHBL HA TepHAPHUX KBa3irpynax 3 BU-
KOPHCTAHHAM METO/Y KJacudikarii 3 TOYHICTIO /10 MapacTpOpHO-IEPBUHHOI PIBHOCHILHOCTI.
B (8] moBemeno, 1o ichye He Ginbine 36 TaKUX PIBHSHB JOBXKUHE TPH, TOOTO TAKUX AKi MAIOThH
Tpu byHKIiiHI 3MinHL. Y [15] BeTaHOBIEHO, MO Ccepes HUX € TOYHO 4 GYHKIIHHUX DIBHSIHHS
tany (2,2,2,2) (KoxKHA MpeJiMeTHA 3MiHHA Ma€ JIBl MOstBH ). Y IIiii CTATTI BCTAHOBJIEHO, 10 PiB-
uguag tuiy (5;3;0;0) napacrpodHO-II€PBUHHO-HEPIBHOCHIIbHI JIO PELITH TEPHAPHUX PIBHIHb
3 TphoMa (PYHKIIHHUMA 3MIHHUMEU. 3HANIEHO BCI JIHIHHI PO3B’I3KM WX PIBHSHB 1 JIOBEIEHO,
HEPIBHOCHIBHICTH MixK piBHsSHHAM F) (Fy(y,v,y), 2, 2) = F3(z,x,x) ta inmuvn GyHKIiiEAME
PIBHSIHHSIMHU JIOBXKWHHU TPU.

Kmaro4doBi caoBa: meprapha keasiepyna, Gyrkuiline pieHAHHA, npedmemnul mun,
napacmpoPro-nepsurta PieHOCUALHICMD.
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TapaceBuu A.B.

acnuparmxa 3 Kypea Paxysvmema npo2pamMmMuposaHUa, KOMNOOMEPHBLT U
MENEKOMMYHUKAGUUOHHDLT CUCTNEM,
XMeAvHUUKUT HAUUOHANDHLT YHUBEPCUNEM,

O ITIAPACTPO®HO-IIEPBIYHOI HEEKBUBAJIEHTHOCTH
OBOBINEHHBIX TEPHAPHBIX KBA3UTPVYIITIOBBIX
®YHKIINIOHAJIBHBIX YPABHEHUII TUIIA (5;3;0;0)

PESIOME
Jlpa (pyHKIMOHAJIBHBIX YpaBHEHHS HA3BIBAIOTCS MapacTPOMOHO-TEPBUYHO-9KBUBAJIEHTHBIMH,
€CJIM OJIHO YPaBHEHUEe MOXKeT ObITh MOJYYEHO ¢ JPYTroro 3a KOHEYHOe YUC/I0 TPUMEHeHU  efi-
crBuil: 1) 3aMeHBl CTOPOH ypaBHEHHs; 2) MepenMeHOBaHUs (DYHKIMOHAIBHBIX TEPEMEHHBIX; 3)
IePENMEHOBAHUS TIPEIMETHBIX IePEMEHHbIX; 4) MPUMeHeHUsT epBUIHBIX ToxKaecTB ([11]). Dra
CTAThsl SIBJSIETCH I[IPOJIOJIZKEHUEM HCCJIe0BaHUs KBAa3UIPYIIIOBLIX (PYHKIMOHAJIBHBIX ypaBHEe-
HUIl Ha TepHAPHBIX KBAa3UI'PYIIAX € MUCIOJIb30BAHUEM METOAA KJAACCU(PUKAIUH ¢ TOYHOCTHIO
10 mapactpodHo-iepBuYHON skBUBaseHTHOCTH. B [8] mokazano, uto cymecrByer e Gosee 36
TaKUX yPaBHEHUU JJIMHBI TPH, TO €CTh TAKHX KOTOPbIE MMEIOT TpH (DYHKIHOHAJIBHBIX Iepe-
MeHHBIX. B [15] ycTaHoBIeHO, 9TO cpe/in HUX eCTh TOYHO 4 (DYHKIIMOHATBHBIX YDABHEHHSI THIIA
(2,2,2,2) (kaxkaas npejMeTHas TepeMeHHast MMeeT JBa MOsBIeHnus ). B 310l craThe Takke J10-
KazaHo, 4To ypasHenus tuna (5,3,0,0) aBAAOTHCA 1APACTPODHO-IIEPBUIHO-HEIKBUBAJIEHTHBI
K OCTaJbHBIM TePHAPHBIM yPaBHEHUSIM C TpeMsi (PYyHKIIHMOHAJIHLHBIMU TTepeMeHHbIME. Haiigenbt
BCe JIMHEWHBbIe pPellleHns 3THX YpaBHEHUH W JTOKa3aHa HEIKBUBAJEHTHOCTb MEXKTY YpPaBHEHHEM
Fi(Fy(y,y,y),x,x) = F3(x,z,r) u apyrumu HYHKIUOHATBHBIMA YPABHEHUSAMHE JIJIHHBL TPH.

KarwoueBbie caoBa: mepHapHaa K6a3u2pynna, GYHKUUOHAADHOE YPABHEHUE, NPeOMe-
Muod Mun, napacmpoPhro-nepeuIHas IKBUBAAEHMHOCTD.
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