УДК 546(786+742+662): 543.427.34: 546.05

СИНТЕЗ И МОРФОЛОГИЯ ПОВЕРХНОСТИ ГЕТЕРОПОЛИГЕКСАВОЛЬФРАМОНИКЕЛАТОВ (II) ЕВРОПИЯ И ЛЮТЕЦИЯ

Н.И. Гумерова, Е.В. Касьянова, А.В. Нотич, Г.М. Розаниев, С.В. Радио

Определены условия синтеза гетерополигексавольфрамоникелатов (II) европия и лютеция $Ln_4[Ni(OH)_6W_6O_{18}]_3\cdot nH_2O$ (Ln=Eu, Lu) из растворов системы $Ni^{2+}-WO_4^{2-}-H^+-H_2O$ ($\nu(Ni^{2+}):\nu(WO_4^{2-}):\nu(H^+)=1:6:6)$ и по обменной реакции из $Na_4[Ni(OH)_6W_6O_{18}]\cdot 16H_2O$. Методом ИК—спектроскопического анализа показано, что анионы в выделенных солях относятся к структуре Андерсона $[Ni(OH)_6W_6O_{18}]^{4-}$. Методом сканирующей электронной микроскопии исследована морфология поверхности полученных солей и установлена их однофазность.

Ключевые слова: гетерополисоединения, гетерополианионы со структурой Андерсона, европий, лютеций, микроскопический анализ.

Введение. Полианионы со структурой Андерсона $[H_x X M_6 O_{24}]^{n-}$ (M – Mo, W, X – гетероатом) были впервые описаны в 1937 г., но только в последние годы эти соединения в основном исследуются как неорганические блоки для построения необычных 0D, 1D, 2D и даже 3D многофункциональных соединений. Основываясь на эти данные, было получено ряд соединений, в которых в качестве линкеров гетерополианионов со структурой Андерсона выступают катионы редкоземельных металлов.

Первой в ряду таких соединений была соль $[La(H_2O)_7Al(OH)_6Mo_6O_{18}]_n$ 4 nH_2O [1], в которой в полимерной цепи анионы Андерсона выступают как бидентатные лиганды скоординированные двумя катионами La³⁺ через терминальные атомы кислорода, так что лантан имеет координационное число девять и находится в центре трехшапочной тригональной призмы. На сегодняшний день известно о люминесцентных свойствах соединений с анионом структуры Андерсона, содержащие ионы лантаноидов. Так, в кристаллической структуре и люминесцентных сообщается o синтезе, $[Eu(H_2O)_7][Al(OH)_6Mo_6O_{18}]\cdot 4H_2O$ И $\{(C_2H_5NO_2)_2[Eu(H_2O)_5]\}[Al(OH)_6Mo_6O_{18}]\cdot 10H_2O.$ $[Eu(H_2O)_7][Al(OH)_6Mo_6O_{18}]\cdot 4H_2O$ имеет одномерную цепочечную структуру, образованную полианиона- $[Al(OH)_6Mo_6O_{18}]^3$ гидратированными катионами Eu^{3+} , соединение И $\{(C_2H_5NO_2)_2[Eu(H_2O)_5]\}[Al(OH)_6Mo_6O_{18}]\cdot 10H_2O$ имеет трехмерную супрамолекулярную структуру. Измерение люминесценции при комнатной температуре указывает на то, что соединения $[Eu(H_2O)_{7\mu}][Al(OH)_6Mo_6O_{18}]\cdot 4H_2O$ и $\{(C_2H_5NO_2)_2[Eu(H_2O)_5]\}[Al(OH)_6Mo_6O_{18}]\cdot 10H_2O$ проявляют интенсивное красное и оранжевое флуоресцентное свечение соответственно. Природа разного излучения может быть связана с разной симметрией расположения центров Eu³⁺ в двух соединениях.

Для европия также описаны соединения $[(Eu(H_2O)_6)_2(TeMo_6O_{24})]_n$ [3] и $[Eu(H_2O)_7Cr(OH)_6Mo_6O_{18}]_n \cdot nH_2O$ [4], которые также проявляют люминесцентные свойства.

Следует отметить, что данных о полиоксометаллатах с анионом структуры Андерсона и катионами лютеция на сегодняшний день в литературе нет.

Возможность образования никельсодержащих гетерополианионов со структурой Андерсона и получение растворимой в воде соли $Na_4[Ni(OH)_6W_6O_{18}]\cdot 16H_2O$ [5] были взяты за основу для разработки условий синтеза новых полиоксовольфраматов с катионами европия (+3) и лютеция (+3) – $Ln_4[Ni(OH)_6W_6O_{18}]_3\cdot nH_2O$ (Ln=Eu, Lu). Новизна данной работы состоит в том, что впервые синтезированы соли с катионами лантанидов и вольфрамсодержащим анионом структуры Андерсона как по прямой реакции взаимодействия $Ln(NO_3)_3$ (Ln=Eu, Lu) с подкисленным водным раствором Na_2WO_4 и $Ni(NO_3)_2$ (способу, характерному для получения гетерополигексамолибдометаллатов [2, 3]), так и по обменной реакции взаимодействия $Ln(NO_3)_3$ с раствором гетерополигексавольфрамоникелата (II) натрия.

Экспериментальная часть. Характеристика и стандартизация исходных веществ. При проведении исследований были использованы водные растворы $Na_2WO_4\cdot 2H_2O$ (ч.д.а), HNO_3 (х.ч), $Ni(NO_3)_2\cdot 6H_2O$ (ч.д.а.), $Ln(NO_3)_3\cdot 6H_2O$ (Ln = Eu, Lu) (х.ч.). Установление точных концентраций растворов исходных веществ проводили по стандартным методикам: Na_2WO_4 – гравиметрически, гравиметрическая форма WO_3 ($\delta=0.5$ %) [6]; HNO_3 – титрованием точной навески $Na_2B_4O_7\cdot 10H_2O$ (индикатор метиловый красный) ($\delta=0.5$ %) [7]; $Ni(NO_3)_2$ – гравиметрически, гравиметрическая форма $Ni(C_4H_7N_2O_2)_2$ ($\delta=0.5$ %) [8]. Раствор диметилглиоксима ($\omega=1$ %) готовили по методике [7], растворяя 2 г $C_4H_8N_2O_2$ (ч.д.а.) в 200 мл 96%-го этанола. Стандартизацию растворов $Ln(NO_3)_3$ проводили прямым комплексонометрическим титрованием в среде ацетатного буферного раствора (рН 5-5,5) с индикатором ксиленоловым оранжевым ($\delta=0.8$ %). Точку эквивалентности фиксировали визуально по переходу розовой окраски в желтую.

Методика синтеза солей. Синтез солей производился двумя способами.

Способ 1. Для получения солей гадолиния по прямой реакции необходимое для образования гетерополигексовольфрамоникелат-аниона $[Ni(OH)_6W_6O_{18}]^{4-}$ количество нитрата никеля прибавляли по каплям к подкисленным до $Z = \nu(H^+)/\nu(WO_4^{\ 2-}) = 1,00$ растворам вольфрамата натрия. К полученным растворам добавляли стехиометрическое количество раствора $Ln(NO_3)_3$.

Способ 2. Синтез солей по обменной реакции осуществляли следующим образом. Навеску гетерополигексовольфрамоникелата (II) натрия $Na_4[Ni(OH)_6W_6O_{18}]\cdot 16H_2O$, предварительно синтезированного по описанной в [5] методике, растворяли в нагретой до 60^{0} С дистиллированной воде. После полного растворения соли к полученному раствору при перемешивании добавляли стехиометрическое количество $Ln(NO_3)_3$.

Образовавшиеся осадки оставляли под маточным раствором на 1 месяц, затем отфильтровывали, промывали дистиллированной водой, высушивали на воздухе до постоянной массы и проводили анализ на содержание основных компонентов.

Методика химического анализа солей. Вначале точные навески (по $\sim 0.2 \, \Gamma$) воздушно-сухих образцов кипятили в смеси концентрированных НСІ и НОО3 (15 и 5 мл соответственно) для перевода вольфрама в нерастворимый гидратированный желтый триоксид WO₃·xH₂O и частичного отделения его от никеля и гадолиния. Для полного отделения никеля и гадолиния после упаривания к мокрому осадку добавляли 10 мл НОО3 и выпаривали на водяной бане практически досуха. Затем приливали 70 мл дистиллированной воды и упаривали на водяной бане до 40 мл. После этого осадок WO₃·хH₂O отфильтровывали через беззольный фильтр «синяя лента», промывали 3 %-м раствором азотной кислоты, высушивали и прокаливали до гравиметрической формы WO_3 при 800° C ($\delta = 0.5$ %). В полученном фильтрате затем определяли содержание Ln^{3+} (Ln = Eu, Lu) и Ni^{2+} . Для этого сначала к фильтрату добавляли 10 мл 10% щавелевой кислоты и нагревали до образования и укрупнения осадка $Ln_2(C_2O_4)_3 \cdot nH_2O_5$, который отфильтровывали через беззольный фильтр «синяя лента» и промывали 3 %-м раствором $H_2C_2O_4$. После чего осадок высушивали и прокаливали при 800° С до гравиметрической формы Ln_2O_3 ($\delta=0.8$ %). Далее в упаренном до объёма ~2 мл фильтрате определяли содержание никеля. Для этого добавляли 50 мл дистиллированной воды, нагревали раствор до 80°C, добавляли 25 мл 25 %-го раствора аммиака и приливали 10 мл 1 %-го раствора диметилглиоксима в этаноле. Раствор с образовавшимся красным осадком нагревали при 60° C в течение 20 мин. и оставляли остывать до комнатной температуры. После этого осадок отфильтровывали через фильтр Шотта (пористость 40), промывали холодной водой и высушивали при 120° С до постоянной массы – гравиметрической формы $Ni(C_4H_7N_2O_2)_2$ ($\delta = 0.8$ %). Содержание воды в солях определяли прокаливанием точных навесок воздушно-сухих образцов при 550° C ($\delta = 0.5\%$).

Параллельно подтверждали отсутствие натрия в фильтрате атомно-абсорбционной спектроскопией (ААС «Сатурн-3»; пламя ацетилен-воздух; аналитическая линия 589,0 нм; источник резонансного излучения – высокочастотная безэлектродная лампа ВСБ-2; I = 70 mA).

 $\it UK$ -спектроскопический анализ. Для идентификации анионов в составе синтезированных солей был использован ИК-спектроскопический анализ. ИК-спектры записывали на ИК-спектрометре FTIR Spectrum BXII (Perkin-Elmer) в области волновых чисел $400 \div 4000$ см $^{-1}$. Для этого навеску соли 0,0030 г перетирали с 0,6000 г монокристаллического КВг и спрессовывали в тонкие диски.

Микроскопический анализ. Микроскопические исследования проводили методом сканирующей электронной микроскопии (SEM) на микроскопе JSM-6490 LV (JEOL). Съемка проводилась для воздушно-сухих образцов, нанесенных на токопроводящий графитовый скотч в режиме обратно рассеянных электронов (BEC) при элементном анализе фаз, входящих в состав образца, и в режиме вторичных электронов (SEI) при изучении морфологии поверхности. Использование графита улучшало качество изображения за счет исключения накопления статистического потенциала на поверхности образца и резкой дифференциации электронного пучка на составляющие по скорости и энергии. При проведении микроскопических исследований был выполнен элементный анализ с использованием энергодисперсионного рентгеновского спектрометра INCA PentaFETx3 (ОХFORD Instruments).

Обсуждение рзультатов. При разработке условий синтеза гетерополигексавольфрамоникелатов р.з.э. учитывалась возможность образования гетерополигексавольфрамоникелат (II)-анионов в подкисленном до Z = 1,00 растворе вольфрамата натрия в присутствии ионов Ni^{2+} [9]:

$$Ni^{2+} + 6 WO_4^{2-} + 6 H^+ = [Ni(OH)_6 W_6 O_{18}]^{4-}$$
.

Для синтеза гетерополигексавольфрамоникелатов (II) европия и лютеция использовали два подхода. В первом случае (Способ 1) соли получали по прямой реакции взаимодействия стехиометрических количеств $Ln(NO_3)_3$ (Ln = Eu, Lu), $Ni(NO_3)_2$, Na_2WO_4 и HNO_3 при Z = 1,00:

$$1,33 \text{Ln}^{3+} + \text{Ni}^{2+} + 6\text{WO}_4^{2-} + 6\text{H}^+ + \text{nH}_2\text{O} \rightarrow \text{Ln}_{1.33}[\text{Ni}(\text{OH})_6\text{W}_6\text{O}_{18}] \cdot \text{nH}_2\text{O} \downarrow$$

Во втором (Способ 2) — по обменной реакции из гетерополисоединения $Na_4[Ni(OH)_6W_6O_{18}]\cdot 16H_2O$, предварительно синтезированного по описанной в [5] методике:

$$1,33Ln^{3+} + Na_4[Ni(OH)_6W_6O_{18}] \cdot 16H_2O \rightarrow Ln_{133}[Ni(OH)_6W_6O_{18}] \cdot nH_2O \downarrow + 4Na^+ + (16-n)H_2O.$$

При этом из раствора в обоих случаях были получены рентгеноаморфные осадки голубого цвета, результаты химического анализа которых представлены в табл. 1.

Результаты химического анализа солей

Таблица 1

Результаты химического анализа	Ln_2O_3	NiO	WO_3	H_2O
Найдено для соли, полученной по Способу 1, мас. %	12,1	3,5	69,0	14,9
Вычислено для $Eu_4[Ni(OH)_6W_6O_{18}]_3\cdot 41H_2O$, мас.%	11,74	3,73	69,53	15,00
Найдено для соли, полученной по Способу 2, мас. %	12,3	3,3	69,3	14,1
Вычислено для $Eu_4[Ni(OH)_6W_6O_{18}]_3 \cdot 39H_2O$, мас. %	11,80	3,76	69,95	14,49
Найдено для соли, полученной по Способу 1, мас. %	12,6	3,8	67,7	14,9
Вычислено для $Lu_4[Ni(OH)_6W_6O_{18}]_3\cdot 42H_2O$, мас.%	13,10	3,69	68,70	14,51
Найдено для соли, полученной по Способу 2, мас. %	12,5	3,9	68,4	14,8
Вычислено для Lu ₄ [Ni(OH) ₆ W ₆ O ₁₈] ₃ ·41H ₂ O, мас. %	13,14	3,70	68,89	14,27

Отмечается [10], что соединения с анионом $[X^{n+}(OH)_6M_6O_{18}]^{(6-n)-}(X^{n+}$ – гетероатом, $M=Mo,\ W)$ чаще всего не образуют кристаллов, подходящих для определения структуры. Причём причина данного явления связана с нарушением эффективной упаковки шестью недиссоциированными атомами водорода, образующими связи с атомами кислорода почти планарной группы XO_6 .

ИК-спектры полученных по Способу 1 (рис. 1, δ , ε) и Способу 2 (рис. 1, a, θ) солей имеют одинаковый вид и практически совпадают, с незначительными отклонениями, с описанным в [5] ИК-спектром Na₄[Ni(OH)₆W₆O₁₈]·16H₂O (рис. 1, ∂), что указывает на идентичность анионов в этих солях и принадлежность их к структуре гетерополианиона Андерсона. Колебания 950-960 см⁻¹ соответствуют валентным колебаниям концевых связей W=O, 470-900 см⁻¹ – валентным колебаниям связей W=O в мостиковых группах W=O-W, 1620-1630 см⁻¹ – деформационным колебаниям H=O-H, 3300-3500 см⁻¹ – валентным колебаниям связей O-H в молекулах H₂O и OH-группах в структурном фрагменте Ni(OH)₆ гетерополианиона.

Микроскопический анализ показывает, что поверхность зерен полученных солей имеет нечеткие размытые края. В случае европиевых солей порошок имеет более мелкодиспресную природу, у лютециевых же образцов зерна образуют более крупные конгломераты. Размер зерен, полученных по Способу 1, находится в пределах 150-250 нм, а для образца, полученного по Способу 2 – 200-400 нм (рис. 2).

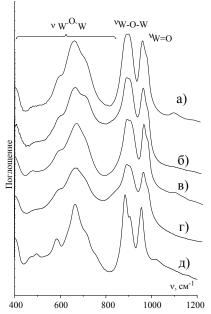


Рис. 1. ИК-спектры синтезированных гетерополисоединений:

- a) Lu₄[Ni(OH)₆W₆O₁₈]₃·42H₂O;
- б) Lu₄[Ni(OH)₆W₆O₁₈]₃·41H₂O;
- в) Eu₄[Ni(OH)₆W₆O₁₈]₃·39H₂O;
- г) Eu₄[Ni(OH)₆W₆O₁₈]₃·41H₂O;
- д) Na₄[Ni(OH)₆W₆O₁₈]·16H₂O [5]

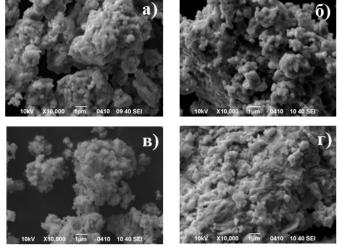


Рис. 2. SEM-изображение поверхности порошка $Ln_4[Ni(OH)_6W_6O_{18}]_3 \cdot nH_2O$: а) и в) получены по прямой реакции (а) — Eu, в) — Lu); б) и г) получены по обменной реакции (б) — Eu, г) — Lu)

Равномерный контраст поверхности всех выделенных солей в режиме BEI может свидетельствовать об однофазности полученных соединений (рис. 3).

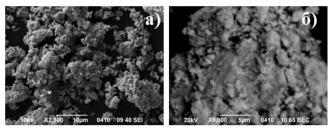


Рис. 3. Контраст поверхности порошков $Eu_4[Ni(OH)_6W_6O_{18}]_3\cdot 41H_2O$ (а) и $Lu_4[Ni(OH)_6W_6O_{18}]_3\cdot 42H_2O$ (б) в режиме обратно рассеянных электронов

К такому же выводу можно прийти, проанализировав результаты рентгеноспектрального микроанализа. На микрофотографиях порошков солей в характеристическом рентгеновском излучении отсутствуют зоны с разной морфологией поверхности, и наблюдается равномерное распределение Ln (Ln = Eu, Lu), Ni, W, O без сегрегаций и ликваций, что подтверждает однофазность продуктов (рис. 4).

Рис. 4. Съемка поверхности порошка $Lu_4[Ni(OH)_6W_6O_{18}]_3$:42 H_2O в характеристическом рентгеновском излучении ($Lu\ L\alpha 1$, $Ni\ K\alpha 1$, $W\ L\alpha 1$, $O\ K\alpha 1$).

Рентгеноспектральный микроанализ проводили в разных областях поверхности порошка с различной площадью. Результаты элементного анализа (рис. 5) во всех случаях идентичны с результатами классического химического анализа и дают следующие мольные соотношение элементов: для $Eu_4[Ni(OH)_6W_6O_{18}]_3\cdot 41H_2O$ — Eu:Ni:W=1,28:1,00:6,03, для $Eu_4[Ni(OH)_6W_6O_{18}]_3\cdot 39H_2O$ — Eu:Ni:W=1,39:1,00:5,97, для $Lu_4[Ni(OH)_6W_6O_{18}]_3\cdot 42H_2O$ — Lu:Ni:W=1,30:1,00:6,09, для $Lu_4[Ni(OH)_6W_6O_{18}]_3\cdot 41H_2O$ — Lu:Ni:W=1,33:1,00:6,00).

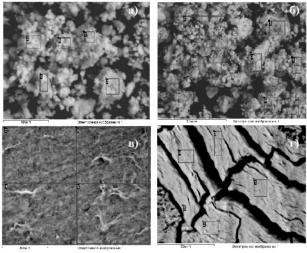


Рис. 5. SEM-изображение порошков $Ln_4[Ni(OH)_6W_6O_{18}]_3\cdot nH_2O$: a) Ln=Eu, n=41; б) Ln=Eu, n=39, в) Ln=Lu, n=42; г) Ln=Lu, n=41. Указаны области, в которых выполнен элементный анализ

Выводы. Установлено, что гетерополигексавольфрамоникелаты (II) европия и лютеция $Ln_4[Ni(OH)_6W_6O_{18}]_3 \cdot nH_2O$ (Ln = Eu, Lu) можно синтезировать как по прямой реакции в системе $Ln^{3+} - Ni^{2+} - WO_4^{2-} - H^+ - H_2O$ ($v(Ln^{3+}) : v(Ni^{2+}) : v(WO_4^{2-}) : v(H^+) = 1,33 : 1 : 6 : 6)$, так и по обменной реакции стехиометрических количеств Ln^{3+} и $Na_4[Ni(OH)_6W_6O_{18}] \cdot 16H_2O$. Принадлежность анионов к структурному типу Андерсона в выделенных солях установлена методом ИК-спектроскопии. Методом сканирующей электронной микроскопии исследована морфология поверхности полученных солей и установлено, что способ получения влияет на размер зерен – 150-250 нм в случае прямой реакции, 200-400 нм в случае обменной реакции. Однофазность полученных солей подтверждена равномерным контрастом поверхности образцов солей в режиме обратно рассеянных электронов.

РЕЗЮМЕ

Визначено умови синтезу європій та лютецій гетерополігексавольфрамонікелатів (II) $Ln_4[Ni(OH)_6W_6O_{18}]_3 \cdot nH_2O$ (Ln = Eu, Lu) за прямою реакцією в системі $Ni^{2+} - WO_4^{2-} - H^+ - H_2O$ ($v(Ni^{2+}) : v(WO_4^{2-}) : v(H^+) = 1 : 6 : 6$) та за обмінною реакцією з $Na_4[Ni(OH)_6W_6O_{18}] \cdot 16H_2O$. Методом ІЧ-спектроскопічного аналізу показано, що аніони в виділених солях відносяться до структури Андерсона $[Ni(OH)_6W_6O_{18}]^{4-}$. Методом скануючої електронної мікроскопії досліджено морфологію поверхні синтезованих солей та встановлено їх однофазність.

Ключові слова: гетерополісполуки, гетерополіаниони зі структурою Андерсона, європій, лютецій, мікроскопічний аналіз.

SUMMARY

The conditions for europium and lutetium heteropoly hexatungstonickelate (II) $Ln_4[Ni(OH)_6W_6O_{18}]_3 \cdot nH_2O$ (Ln = Eu, Lu) synthesis by direct reaction in the system $Ni^{2^+} - WO_4^{2^-} - H^+ - H_2O$ ($\nu(Ni^{2^+}) : \nu(WO_4^{2^-}) : \nu(H^+) = 1 : 6 : 6$), and by an exchange reaction from $Na_4[Ni(OH)_6W_6O_{18}] \cdot 16H_2O$ were elaborated. By FTIR spectroscopy showed that the anions in the isolated salts corresponds to the Anderson structure $[Ni(OH)_6W_6O_{18}]^{4^-}$. The surface morphology of obtained salts was investigated by scanning electron microscopy. It was found that the way of obtaining is influence on the grain size -100-250 nm in the case of the direct reaction, and 200-400 nm in the case of the exchange reaction. Homogeneity of the obtained phase was confirmed by the uniform contrast of the surface mode of backscattered electrons.

Keywords: heteropoly, heteropolyanion, Anderson structure, europium, lutetium, electron microscopy.

СПИСОК ЛИТЕРАТУРЫ

- 1. A novel polyoxometalate chain formed from heteropolyanion building blocks and rare earth metal ion linkers: [La(H₂O)₇Al(OH)₆Mo₆O₁₈]n·4nH₂O / V. Shivaiah, P.V.N. Reddy, L.Cronin [et al.] // J. Chem. Soc., Dalton Trans. 2002. P. 3781-3782.
- 2. Influence of different site symmetries of Eu³⁺ centers on the luminescence properties of Anderson-based compounds / R. Cao, S. Liu, L. Xie [et al.] // Inorganica Chimica Acta. 2008. Vol. 361. P. 2013-2018.
- 3. Drewes D. Synthesis and structure of a novel type of polyoxomolybdate lanthanide complex: $[(Ln(H_2O)_6)_2(TeMo_6O_{24})]$ (Ln = Ho, Yb) / D. Drewes, B. Krebs // Z. Anorg. Allg. Chem. 2005. Vol. 631. P. 2591-2594.
- 4. Self-Assembly of polyoxometalate-supported ln-h nydroxo/oxo clusters with 1d extended structure: $[Ln^{III}(H_2O)_7Cr(OH)_6Mo_6O_{18}]n\cdot 4nH_2O$ (Ln = Ce, Sm, Eu) / D.-M. Shia, F.-X. Mab, C.-J. Zhanga [et al.] // Z. Anorg. Allg. Chem. $-2008.-Vol.\ 634.-P.\ 758-763.$
- Спеш. 2008. VOI. 034. I . 738-703. 5. Фазообразование в системе Ni^{2+} – WO_4^2 – H^+ – H_2O (Z = 1,00). Кристаллическая структура и свойства гетерополигексавольфрамоникелата (+2) натрия $Na_4[Ni(OH)_6W_6O_{18}]\cdot 16H_2O$ / Г.М. Розанцев, С.В. Радио, Н.И. Гумерова [и др.] // Журнал структурной химии. – 2009. – Т. 50, № 2. – С. 311-319.
- 6. Шарло Г. Методы аналитической химии. Количественный анализ неорганических соединений / Г. Шарло. Л: Химия, 1965. 975 с.
- 7. Коростелев П.П. Приготовление растворов для химико-аналитических работ / П.П. Коростелев. М: Наука, 1964.-400 с.
- 8. Практическое руководство по неорганическому анализу / В.Ф. Гиллебранд, Г.Э. Лендель, Г.А. Брайт, Д.И. Гофман. М: Химия, 1966. 1112 с.
- 9. Радио С.В. Моделирование равновесий в растворах $Ni^{2+} WO_4^{2-} H^+ H_2O$ / С.В. Радио, Ф.Н. Павлий, Г.М. Розанцев // Вопр. химии и хим. технологии. 2009. № 4. С. 152-158.
- 10. Lee U. Tetraammonium hexahydrogen hexamolybdonickelate (II) tetrahydrate, (NH₄)₄[H₆NiMo₆O₂₄]·4H₂O / U. Lee, H.-C. Joo, J.-S. Kwon // Acta Cryst. Sec. E. 2002. Vol. E58. C. i6-i8.

Поступила в редакцию 30.09.2013 г.