Elastic equilibrium of isotropic shallow shell for arbitrary Gaussian curvature with cracks and hole

Authors

  • E. N. Dovbnya

Keywords:

hole, crack, shell, Fourier transformation, stress concentration factors, stress intensity factors

Abstract

The elastic equilibrium problem of isotropic shallow shell for arbitrarily gaussian curvature has been considered. The construction, which subjected to tension load, is weakened by two through cracks, located along the x-axis, and by circular hole between them. The problem was reduced to a system of linear algebraic equations. Numerical solution is based on the finite difference method and on the use of special quadrature formulas for Cauchy type integrals, while the unknown functions have a root singularity at the ends of the integration interval. As a result the stress concentration factors were obtained along hole contour and the stress intensity factors were obtained at the ends of cracks.

References

Folias E. S. An axial crack in a pressurized cylindrical shell / E. S. Folias // International Journal of Fracture Mechanics. – 1965. – No 1. – P. 104–113.

Erdogan F. Cylindrical and spherical shells with cracks / F. Erdogan, J. Kibler // International Journal of Fracture Mechanics. – 1969. –Vol. 5, No 3. – P. 229–237.

Barsoum R. S. Analysis of through cracks in cylindrical shells by the quarter-point elements / R. S. Barsoum, R. W. Loomis, B. D. Stewart // International Journal of Fracture Mechanics. – 1979. – Vol. 15, No 3. – P. 259–280.

Chudnovsky A. Elastic interaction of a crack with a random array of microcracks / A. Chudnovsky, W. Shaofu // International Journal of Fracture. – 1991. – No 49. – P. 123–140.

Erdogan F. A note on the interference of two collinear cracks in shell / F. Erdogan, M. Ratwani // International Journal of Fracture. – 1974. – Vol. 10, No. 4. – P. 463–465.

Sanders J. L. Circumferential Through-Cracks in Cylindrical Shells under Tension / J. L. Sanders // Journal of Applied Mechanics. – 1982. – Vol. 49, No 1. – P. 103–107.

Schmueser D. The periodic array of interface cracks and their interaction / D. Schmueser, M. Comnlnou // International Journal of Solids and Structures. – 1979. – Vol. 15. – P. 927–934.

Picazo M. On the elastic compliance of a circular hole with two symmetric radial cracks initiated at its boundary /M. Picazo, I. Sevostianov // International Journal of Fracture. – 2011. – No 167. – P. 273–280.

Evaluation of S.I.F for crack emanating at 450 orientation from a hole in pressurised cylinder using fea / D. A. Akash, A. Anand, G. V. G. Reddy, L.J. Sudev // International Journal of Applied Research in Mechanical Engineering. – 2013. –Vol. 3, No 1. – P. 44–48.

Ishihama N. Axial cracks on both sides of a hole in a cylindrical shell / N. Ishihama // International Journal of Fracture. –1984. – No 25. – P. 263–272.

Junhong G. Stress analysis for an elliptical hole with two straight cracks / G. Junhong, L. Guanting // Chinese Journal of Theoretical and Applied Mechanics. – 2007. – Vol. 39, No 5. – P. 609–703.

Sergeev B. Stress intensity factors for an arbitrarily oriented crack near a hole in longeron web / B. Sergeev, E. Madenci, D. R. Ambur // Theoretical and Applied Fracture Mechanics. – 1999. – No 31. – P. 213–222.

Гольденвейзер А.Л. Теория упругих тонких оболочек / А.Л. Гольденвейзер. – М.: «Наука», 1976. – 512 с.

Власов В.З. Избранные труды. – В 3-х т. – Т.1 / В.З. Власов. – М.: Изд-во АН СССР., 1962. – 528 с.

Варвак П. М. Справочник по теории упругости / П. М. Варвак, А. Ф. Рябов. – К.: Будiвельник, 1971. – 432 с.

Бидерман В. Л. Механика тонкостенных конструкций. Статика / В. Л. Бидерман. – М.: Машиностроение, 1977. – 488 с.

Хижняк В. К. Смешанные задачи теории пластин и оболочек: Учеб. пособие / В .К. Хижняк, В. П. Шевченко. –Донецк: Изд-во Донецк. ун-та, 1979. – 179 с.

Довбня Е. Н. Система граничных интегральных уравнений для ортотропных оболочек нулевой и отрицательной кривизн, ослабленных разрезами и отверстиями / Е. Н. Довбня // Вестн. Донец. нац. ун-та. Сер. А: Естественные науки. – 1998. – № 2. – С. 45–52.

Шевченко В. П. Метод граничних інтегральних рівнянь у задачах статики пологих ортотропних оболонок з розрізами й отворами / В. П. Шевченко, К. М. Довбня // Математичні методи та фізико-механічні поля. – 2003. –Т. 46, №. 1. – С. 47–59.

Панасюк В. В. Распределение напряжений около трещин в пластинах и оболочках / В. В. Панасюк, М. П. Саврук, А .П. Дацышин. – К.: «Наукова думка», 1976. – 444 с.

Лифанов И. К. Метод сингулярных интегральных уравнений и численный эксперимент (в математической физике, аэродинамике, теории упругости и дифракции волн) / И. К. Лифанов. – М.: ТОО «Янус», 1995. – 520 с.

Erdogan F. E. Numerical solutions of singular integral equations / F. E. Erdogan, G. D. Gupta, T. S. Cook // Methods of analysis and solutions of crack problems. Leyden: Noordhoff Intern. publ. – 1973. – P. 368–425.

Самарский А. А. Методы решения сеточных уравнений / А. А. Самарский, Е. С. Николаев. – М.: Наука, 1978. –592 с.

Published

2014-06-01

Issue

Section

Mechanics