A Commutative bezout domain in which every maximal ideal is princial is an elementary divizor ring.
Keywords:
an elementary divisor ring, a stable range of ring, zip ring, mzip ringAbstract
We prove that a commutative Bezout domain in which every maximal ideal is principal is an elementary divisor ring and its stable range equals 2.References
Kaplansky I. Elementary divisors and modules / I. Kaplansky // Trans. Amer. Math. Soc. – 1949. – V 66. – P. 464–491.
Larsen M. Elementary divisor rings and finitely presented modules / M. Larsen, W. Lewis // Trans. Amer. Math. Soc. – 1974. – V. 187. – P. 231–248.
Gillman L. Rings of continuous functions in which every finitely generated ideal is principal / L. Gillman, M. Henriksen // Trans. Amer. Math. Soc. – 1956. – V. 82. – P. 366–394.
Henriksen M. Some remarks about elementary divisor rings / M. Henriksen // Michigan Math. J. – 1955/56. – V. 3. – P. 159–163.
Vasserstein L.N. The stable rank of rings and dimensionality of topological spaces / L.N. Vasserstein // Functional Anal. Appl. – 1971. – V 5. – P. 102–110.
Faith C. Rings with zero intersection property on annihilators: Zip rings / Faith C. // Publications Math. – 1989. – V 33. – P. 329–332.
Huckaba J. Commutative rings with zero divisors / J. Huckaba // Monograph in Pure and Applied. Math. Marcel Dekker. – Basel and New York. – 1988. – P. 331–335.
Bourbaki N. Linear algebra / N. Bourabaki // Algebra. – Hermann, Paris. – 1961. – V. 1. – P. 191-425.
Satyanarayana M. Rings with primary ideals as maximal ideals / M. Satyanarayana // Math scand. – 1967. – V 20. – P. 52–54.
Matlis F. The minimal prime spectrum of a reduced ring / F. Matlis // Illinois J. Math. – 1983. – V. 27, № 3. – P. 353–391.
Menal P. On regular rings with stable rage 2 / P. Menal, J. Moncasi // J. Pure Appl. Algebra. – 1982. – V. 24. – P. 25–40.
Amitsur S.A. Remarks of principal ideal rings / S.A. Amitsur // Osaka Math. J. – 1963. – V 15. – P. 59– 69.
Gillman L. Some remarks about elementary divisor rings / L. Gillman, M. Henriksen // Trans. Amer. Math. Soc. – 1956. – V 82. – P. 362–365.
Shores T.S. Modules over semi hereditary Bezout rings / T.S. Shores // Proc. Amer. Math. Soc. – 1974. – V. 46. – P. 211–213.