Variety of semisymmetry-like medial quasigroups and its subvarieties.
Keywords:
quasigroup, identity, parastrophe, symmetry, qroup isotope, variety, medial, asymmetric, middle symmetric, semisymmetric, totally symmetricAbstract
In this paper, the identities defining the varieties ₰, ₰1, ₰2, which are similar to the variety of semisymmetric group isotopes are described. The conditions of coinciding quasigroups from ₰ , ₰1and ₰2and semisymmetric isotopes of a commutative group are established. According to symmetry concept, these three varieties and their parastrophic varieties, the quasigroups belonging to all these varieties are described. The relationships among all these varieties are shown.References
Murdoch D.C. Structure of abelian quasigroups / D.C. Murdoch // Trans. Amer. Math. Soc. – 1941. – № 49. – P. 392-409.
Belousov V.D. Foundations of the theory of quasigroups and loops / V.D. Belousov. – M: Nauka, 1967. – 222 p. (Russian).
Belyavskaya G.B. T-quasigroups and center of quasigroup / G.B. Belyavskaya // Mat. Issled. Chisinau. – 1989. – Vol. 111. – P. 24-43. (Russian).
Jezek J. Quasigroups isotopic to a group / J. Jezek, T. Kepka // Comment Math. Univ. Carol. – 1975. – 16, № 1. – P. 34-50.
Shchukin K.K. Automorphic groups of prime medial quasigroups / K.K. Shchukin // Discrete Math. – 1992. – Vol. 4, № 1. – 19-21. (Russian).
Shcherbacov V.A. On the structure of finite medial quasigroups / V.A. Shcherbacov // Bul. Acad. Stiinte Repub. Mold., Mat. – 2005. – № 1. – P. 11-18.
Sokhatsky F.M. On mediality universal algebras and crossed group isotopes / F.M. Sokhatsky // Ukrainian Math. Journal. – 2006. – № 11. – P. 29-35. (Ukrainian).
Sade A. Quasigroupes demi-symétriques / A. Sade // Ann. Soc. Sci. Bruxelles Sér. I. – 1965. – № 79. – P. 133- 143.
Etherington I.M.H. Note on quasigroups and trees / I.M.H. Etherington // Proc. Edinburgh Math. Soc. – 1964. – (2) 13. – P. 219-222.
Iliev V.V. Semi-symmetric Algebras: General Constructions / V.V. Iliev // J. of Algebra. – 1992. – 148. – P. 479– 496.
Radó F. On semi-symmetric quasigorups / F. Radó // Aequationes mathematicae (Cluj, Romania). – 1974. – Vol. 11, Issue 2. – P. 250-255.
Krainichuk H.V. Classification of group isotopes according to their symmetry groups [Electronic resource] / H.V. Krainichuk // arXiv:1601.07667v1 [math.GR] 28 Jan 2016. – Access mode:http://arxiv.org/pdf/1601.07667v1.pdf.
Sokhatsky F.M. Symmetry in quasigroup and loop theory / F.M. Sokhatsky // [Electronic resource]: 3rd Mile High Conference on Nonassociative Mathematics, Denver, Colorado, USA, August 11-17, (2013). – Access mode: http://web.cs.du.edu/~petr/milehigh/2013/Sokhatsky.pdf.
Smith J.D.H. An introduction to quasigroups and their representation / J.D.H. Smith. – London: Chapman and Hall / CRC, 2007. – 330 p. – (Studies in Advanced Mathematics).
Sokhatsky F.M. On clasification of functional equations on quasigroups / F.M. Sokhatsky // Ukrainian Math. J. – 2004. – T. 56, № 9. – P. 1259-1266. (Ukrainian).
Sokhatsky F.M. About group isotopes II / F.M. Sokhatsky // Ukrainian Math. J. – 1995. – 47 (12). – P. 1935- 1948. (Ukrainian).
Krapež A., Gemini functional equations on quasigroups / A. Krapež, M.A. Taylor // Publ. Math. – Debrecen. – 1995. – Vol. 47, №3-4. – P. 281-292.
Sokhatsky F.M. About group isotopes I / F.M. Sokhatsky // Ukrainian Math. J. – 1995. – 47 (10). – P. 1585-1598. (Ukrainian).