A subset of the critical frequencies of normal waves in orthotropic prismatic waveguide equilateral triangular cross-section

Authors

  • I. A. Moiseyenko
  • V. I. Storozhev
  • M. N. Chernov

Keywords:

longest orthotropic prismatic waveguide, equilateral triangular cross-section, fixed or free lateral surface, normal elastic waves, critical frequency, flexural vibrations of cross-sectional, dependence on the anisotropy parameters

Abstract

Is presented the technique use of triangular coordinates for finding of values of the critical frequencies of normal waves in orthotropic prismatic waveguide equilateral triangular cross-section with fixed or free from stress boundary surfaces. Determined the critical frequencies at which the plane of cross section of the waveguide makes flexural vibrations and running normal waves are generated as longitudinal. Is illustrated dependence of the lowest critical frequencies that are studied from the relations for moduli of longitudinal shear in orthogonal elastic-equivalent directions which characterizes degree of anisotropy waveguide for a waveguide with a fixed lateral surface

References

Гринченко В. Т. Гармонические колебания и волны в упругих телах / В. Т. Гринченко, В. В. Мелешко. – К.: Наук, думка, 1981. – 284 с.

Миттра Р. Аналитические методы теории волноводов / Р. Миттра, С. Ли. – М.: Мир, 1974. – 327 с.

Gopalakrishnan S. Spectral Finite Element Method: Wave Propagation, Diagnostics and Control in Anisotropic and Inhomogeneous Structures / S. Gopalakrishnan, A. Chakraborty, D. R. Mahapatra. – London: Springer-Verlag, 2008. – 449 р.

Elastic waveguides: history and the state of art. II. / V. V. Meleshko, A. A. Bondarenko, S. A. Dovgiy et al. // Journal of Mathematical Sciences. – 2009. – Vol. 162 (1). – P. 99–120.

Elastic waveguides: history and the state of art. I. / V. V. Meleshko, A. A. Bondarenko, A. N. Trofimchuck, R. Z. Abasov // Journal of Mathematical Sciences. – 2010. – Vol. 167 (2). – P. 197–216.

Aalami B. Waves in Prismatic Bars of Arbitrary Cross-Section. / B. Aalami // Journal of Applied Mechanics. Transactions of the ASME. – 1973. – Vol. 40, No 4. – P. 1067–1077.

Hayashi T. Guided wave dispersion curves for a bar with an arbitrary cross section, a rod and rail example / T. Hayashi, W. J. Song, J. L. Rose // Ultrasonics. – 2003. – Vol. 41. – P. 175–183.

Modeling wave propagation in damped waveguides of arbitrary cross-section / I. Bartoli, A. Marzani, H. Matt et al. // Journal of Sound and Vibration. – 2006. – Vol. 295, No 3. – P. 685–707.

Castaings M. Finite Element Model for Waves Guided along Solid Systems of Arbitrary Section Coupled to Infinite Solid Media / M. Castaings, M. Lowe // Journal of the Acoustical Society of America. – 2008. – Vol. 123. – P. 696–708.

Nagaya K. Dispersion of elastic waves in bars with polygonal cross section / K. Nagaya // Journal of the Acoustical Society of America. – 1981. – Vol. 22, No 3. – P. 763–770.

Dispersion and excitability of guided acoustic waves in isotropic beams with arbitrary cross section / P. Wilcox, M. Evans, O. Diligent et al. // Review of Progress in quantitative NDE. – 2002. – Vol. 21. – P. 203–210.

Бондаренко А. А. Нормальные упругие волны в прямоугольном волноводе / А. А. Бондаренко // Акустичний вісник. – 2007. – Вип. 18. – С. 100–103.

Бондаренко А. О. Моди Ламе для пружного прямокутника / А. О. Бондаренко // Вісник Київського університету. Серія: Математика. Механіка. – 2007. – Т. 10, № 4. – С. 12–27.

Dassios G. The basic elliptic equations in an equilateral triangle / G. Dassios, A. S. Fokas // Proceedings of the Royal Society A. – 2005. – Vol. 461, No 2061. – P. 2721–2748.

McCartin B. J. Modal Degeneracy in Equilateral Triangular Waveguides / B. J. McCartin // Journal of Electro-magnetic Waves and Applications. – 2002. – Vol. 16, No 7. – P. 943–956.

McCartin B. J. Eigenstructure of the equilateral triangle, Part I: the Neumann problem / B. J. McCartin // Mathematical Problems in Engineering. – 2002. – Vol. 8, No 6. – P. 517–539.

McCartin B. J. Eigenstructure of the equilateral triangle, Part I: the Dirichlet problem / B. J. McCartin // Society for Industrial and Applied Mathematics Review. – 2003. – Vol. 45, No 2. – P. 267–287.

McCartin B. J. Eigenstructure of the Equilateral Triangle, Part III: The Robin Problem / B. J. McCartin // International Journal of Mathematics and Mathematical Sciences. – 2004. – Vol. 16. – P. 807–825.

McCartin B. J. Eigenstructure of the Equilateral Triangle, Part IV: The Absorbing Boundary Condition / B. J. McCartin // International Journal of Pure and Applied Mathematics. – 2007. – Vol. 37, No 3. – P. 395–422.

McCartin B. J. Spectral structure of the equilateral triangle I: Lamé's formulas / B. J. McCartin // Proceedings of the American Conference on Applied Mathematics (March 24-26, 2008, Cambridge, Massachusetts). – P. 201–208.

McCartin B. J. Eigenstructure of the Discrete Laplacian on the Equilateral Triangle: The Dirichlet & Neumann Problems / B. J. McCartin // Applied Mathematical Sciences. – 2010. – Vol. 4, No 53. – P. 2633–2646.

Práger M. Eigenvalues and Eigenfunctions of the Laplace Operator on an Equilateral Triangle / M. Práger // Applications of Mathematics. – 1998. – Vol. 43, No 4. – P. 311–320.

Published

2014-06-01

Issue

Section

Mechanics