On finite p-groups with non-dedekind norm of abelian non-cyclic subgroups.

Authors

  • T. D. Lukashova СумДПУ iменi А.С. Макаренка

DOI:

https://doi.org/10.31558/1817-2237.2019.1-2.7

Keywords:

p -group, non-Dedekind subgroup, center of the group, generalized norms of the group, the norm of Abelian non-cyclic subgroups of the group

Abstract

In this paper the finite p-groups, in which the norm of Abelian non-cyclic subgroups is Non-Dedekind one, are considered. There were defined the series of general properties of such groups. It was proved that the finite p-group, in which the norm of Abelian non-cyclic subgroups is non-Dedekind and doesn't contain the Abelian non-cyclic subgroups, also doesn't contain such  subgroups.

Author Biography

T. D. Lukashova, СумДПУ iменi А.С. Макаренка

кандидат фiзико-математичних наук, доцент кафедри математики

References

Baer R. Der Kern, eine Charakteristische Untergruppe // Comp. Math. — 1935. — 1.— S. 254–283.

Beidleman J.C., Heineken H., Newell M. Centre and norm // Bull. Austral. Math. Soc. — 2004. — 69. — P. 457–464.

Gavioli N., Legarreta L., Sica C., Tota M. On the number of conjugacy classes of normalisers in a finite p-groups // Bull. Aust. Math. Soc. — 2005. — 73. — P. 219–230.

Russo F. A note on the Quasicentre of a Group // International Journal of Algebra. — 2008. — 2, №7. — P. 301–313.

Guo X., Wang J. On generalized Dedekind groups // Acta Mathematica Hungerica. — 2009. — 122, №1-2. — P. 37–44.

Лукашова Т.Д. Про норму абелевих нециклiчних пiдгруп нескiнченних локально скiнченних р-груп //Вiсник Київського унiверситету, серiя фiз.-мат. науки. — 2004. — №3.— C. 35–39.

Лиман Ф.М., Лукашова Т.Д. Про нескiнченнi 2-групи з недедекiндовою нормою абелевих нециклiчних пiдгруп // Вiсник Київського унiверситету, серiя "Фiз.-мат. науки". — 2005. — №1. — С. 56–64.

Друшляк М.Г. Конечные

Issue

Section

Mathematics