Classification of ternary quasigroups according to their parastrophic symmetry groups, I.
DOI:
https://doi.org/10.31558/1817-2237.2018.1-2.5Keywords:
ternary quasigroup, variety of a quasigroup, parastrophic quasigroups, parastrophic symmetry, parastrophic varieties, parastrophic symmetry groupsAbstract
Quasigroups as algebraic structures are very suitable for construction of cryptographic primitives. There are several classifications of quasigroups. Most of them are made for binary quasigroups.References
Sokhatsky F.M. Parastrophic symmetry in quasigroup theory. Bulletin of Donetsk National University. Series A: Natural Sciences. 2016. (1/2), 70–83.
Sokhatsky F.M. Factorization of operations of medial and abelian algebras. Bulletin of Donetsk National University. Series A: Natural Sciences. 2017.
Сохацкий Ф.Н., Кирнасовский О.Е. Канонические разложения многоместных изотопов групп. // Известия Гомельского государственного университета им. Ф.Скорины, 2001, N3(6). — Вопросы алгебры.– 17, С.88–97
Белоусов В.Д. n -арные квазигруппы //Кишинев:Штиинца.– 1972. – 222 c.
Сохацький Ф.М. Асоцiати та розклади багатомiсних операцiй. // Дисертацiя на здобуття наук.ступ.доктора фiз.—мат.наук. — Київ. — 2006.
Белоусов В.Д. Основы теории квазигрупп и луп //М.: Наука.– 1967. – 222 c.
Белоусов В.Д. Конфигурации в алгебраических сетях // Кишинев: Штиинца.— 1979.— 143 с.
Fedir M. Sokhatsky, Iryna V .Fryz, Invertibility criterion of composition of two multiary operations. Comment. Math. Univ. Carolin. 53,3(2012) 429–445.
F.M. Sokhatsky About of group isotopes I. Ukrainian Math.Journal, 47(10) (1995), 1585−−1598 .
F.M. Sokhatsky About of group isotopes II. Ukrainian Math.J., 47(12) (1995), 1935 − −1948 .
F.M. Sokhatsky About of group isotopes III. Ukrainian Math.J., 48(2) (1996), 283 − −293 .
Sokhatsky Fedir, Syvakivskyj Petro On linear isotopes of cyclic groups, Quasigroups and related systems, 1 n.1(1) (1994), 66 − 76 .
Halyna V. Krainichuk Classification of group isotopes according to their symmetry groups // Folia Math. — 2017. — Vol. 19, no. 1. — P. 84–98
Krainichuk H., Tarkovska O. Semi-symmetric isotopic closure of some group varieties and the corresponding identities // Bul. Acad. ¸Stiin¸te Repub. Mold. Mat. — 2017. — № 3(85). — P. 3–22.
Dimitrova, V., Mihajloska, H Classification of ternary quasigroups of order 4 applicable in cryptography , in print, 7 International Conference of Informatics and Information Technology, Bitola, Feb. 2010
Dimitrova Vesna, Mihajloska Hristina “An Application of Ternary Quasigroup String Transformations.” , 2010
S. Nelson and S. Pico. Virtual tribrackets. arXiv:1803.03210, 2018.
M. Niebrzydowski. On some ternary operations in knot theory . Fund. Math., 225(1):259–276, 2014.
M. Niebrzydowski. Ternarny quasigroups in knot theory arXiv: 1708.05330, 2018